eo_logo
  • Pays/Région
  • Bonjour Mon compte
  • cart   
 
Using Tube Lenses with Infinity Corrected Objectives
Edmund Optics Inc.

Using Tube Lenses with Infinity Corrected Objectives

This is Section 9.2 of the Imaging Resource Guide.

In order to create an image with an infinity-corrected objective, a tube lens must be used to focus the image. One advantage to using an infinity-corrected objective with a tube lens is that there can be a space between the objective and tube lens. The space allows additional optical components to be inserted into the system, such as optical filters or beamsplitters. The distance between an infinity-corrected objective and the tube lens (L) can be varied from the recommended or optimal, but this will affect the image field diameter ($ \varnothing $). Equations 1 and 2 are approximation formulas to determine the relation between ($ \varnothing $) and L.

(1)$$ \varnothing_1 =2 \times f_1 \times \text{NA} $$
(1)
$$ \varnothing_1 =2 \times f_1 \times \text{NA} $$

where $ \small{\varnothing _1} $ is exit pupil of the objective, $ \small{f_1} $ is focal length of the objective, and NA is the numerical aperture of the objective.

(2)$$ L = \frac{ \left( \varnothing_2 - \varnothing_1 \right) \times f_2 }{\varnothing} $$
(2)
$$ L = \frac{ \left( \varnothing_2 - \varnothing_1 \right) \times f_2 }{\varnothing} $$

Where L is the distance between the objective and the tube lens, $ \small{\varnothing _2} $ is entrance pupil of the tube lens, $ \small{f_2} $ is focal length of the tube lens, and $ \small{\varnothing } $ is the image field diameter.

Application Example:

Using an M Plan APO 10X objective (#46-144), MT-1 tube lens (#54-774), and a 2/3” sensor camera, what is the maximum spacing between the tube lens and objective without vignetting? The focal length of the objective ($ \small{f_1} $) is 20mm and NA is 0.28, so the exit pupil diameter can be calculated:

(3)$$ \varnothing_1 = 2 \times 20 \text{mm} \times 0.28 = 11.2 \text{mm} $$
(3)
$$ \varnothing_1 = 2 \times 20 \text{mm} \times 0.28 = 11.2 \text{mm} $$

A 2/3” image sensor features an 11mm diagonal, therefore $ \varnothing $ needs to be at least 11mm. The focal length of the MT-1 tube lens is 200mm and the entrance pupil diameter is 24mm. Therefore,

(4)$$ L = \frac{ \left( 24 \text{mm} -  11.2 \text{mm} \right) \times 200 \text{mm} }{11 \text{mm}} = 232.7 \text{mm}$$
(4)
$$ L = \frac{ \left( 24 \text{mm} -  11.2 \text{mm} \right) \times 200 \text{mm} }{11 \text{mm}} = 232.7 \text{mm}$$

As long as the spacing between the tube lens and objective is less than 232.7mm, there will be no vignetting.

Featured Resources
 Application Note
 Application Note
Ce contenu vous a-t-il été utile ?

Pensez-vous que les microscopes ne sont utilisés que pour des cours de biologie? Venez en apprendre d'avantage sur eux et leurs diverses applications dans le domaine de l' optique, l'imagerie et l'industrie photonique.

Téléchargez notre article technique qui vous permettra d'apprendre les termes importants mais aussi les avancées de la microscopie optique, les techniques d'illumination et les techniques microscopiques. (PDF 898 Ko)

Objectifs de microscopie à longue distance de travail pour les spectres UV, visible ou IR de fabricants tels que Mitutoyo, Olympus ou Nikon.

De la biométrie au séquençage d'ADN en passant par le diagnostique in vitro, retrouvez des produits de qualité, un contenu technique et un savoir-faire d'une seule et même source.

Notre service clientèle est prêt à vous aider.



×