Produit ajouté au panier
TECHSPEC® components are designed, specified, or manufactured by Edmund Optics. TECHSPEC® components are designed, specified, or manufactured by Edmund Optics. Learn More

Lentille Biconvexe, Non Traitée, 25 mm de dia. x 30 mm FL

×
Stock #63-555 En Stock
×
D’autres traitements
×
Quantity Selector - Use the plus and minus buttons to adjust the quantity. +
€31,50
Qté 1-9
€31,50
Qté 10+
€28,25
Prix sur Quantité
Demande de Devis
Les prix sont indiqués hors TVA et droits applicables.
Espace téléchargement
Diamètre (mm):
25.00 +0.0/-0.025
Distance Focale Arrière BFL (mm):
28.31
Distance Focale EFL (mm):
30.00
Traitement:
Uncoated
Substrat: Many glass manufacturers offer the same material characteristics under different trade names. Learn More
Qualité de Surface:
40-20
Power (P-V) @ 632.8nm:
1.5λ
Irregularity (P-V) @ 632.8nm:
λ/4
Centrage (arcmin):
<1
Biseau:
Protective bevel as needed
Épaisseur Centrale CT (mm):
5.50
Tolérance Épaisseur Centrale (mm):
±0.10
Épaisseur au Bord ET (mm):
1.41
Rayon R1=-R2 (mm):
39.22
Ouverture Utile CA (mm):
24.00
f/#:
1.2
Longueur d’Onde à la Focale Donnée (nm):
587.6
Tolérance Distance Focale (%):
±1
Ouverture Numérique NA:
0.42
Type:
Double-Convex Lens
Gamme de Longeur d'Onde (nm):
380 - 2500

Conformité réglementaire

RoHS 2015:
Certificate of Conformance:
Reach 235:

Description commune pour les Produits de la même Famille

Les Lentilles Biconvexes (DCX) Non Traitées TECHSPEC®, également appelées lentilles double-convexes (DCX), ont deux faces positives et symétriques avec des rayons égaux des deux côtés. Ces lentilles sont généralement recommandées pour les applications d'imagerie finie avec un rapport conjugué (rapport entre la distance de l'objet et la distance de l'image) compris entre 0,2 et 5. Pour un rapport conjugué de 1, les aberrations telles que l'aberration sphérique, l'aberration chromatique, la coma et la distorsion sont minimisées ou annulées grâce à la conception symétrique de la lentille. Les Lentilles Biconvexes (DCX) Non Traitées TECHSPEC® résistent aux effets des diverses aberrations dans la conception d'une lentille qui sont finalement visibles dans la performance et affectent la fonction de transfert de modulation (FTM), la taille du point, la télécentricité, la profondeur de champ (DOF), et d'autres. Ces lentilles sont disponibles dans une variété de substrats et d'options de traitement pour les spectres visible et NIR.

Informations Techniques

N-BK7

Typical transmission of a 3mm thick, uncoated N-BK7 window across the UV - NIR spectra.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with MgF2 (400-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 1.75% @ 400 - 700nm (N-BK7)

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS-EXT (350-700nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.5% @ 350 - 700nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS-NIR (400-1000nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 0.25% @ 880nm
Ravg ≤ 1.25% @ 400 - 870nm
Ravg ≤ 1.25% @ 890 - 1000nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with VIS 0° (425-675nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.4% @ 425 - 675nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with YAG-BBAR (500-1100nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 0.25% @ 532nm
Rabs ≤ 0.25% @ 1064nm
Ravg ≤ 1.0% @ 500 - 1100nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with NIR I (600 - 1050nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Ravg ≤ 0.5% @ 600 - 1050nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Typical transmission of a 3mm thick N-BK7 window with NIR II (750 - 1550nm) coating at 0° AOI.

The blue shaded region indicates the coating design wavelengh range, with the following specification: 

Rabs ≤ 1.5% @ 750 - 800nm
Rabs ≤ 1.0% @ 800 - 1550nm
Ravg ≤ 0.7% @ 750 - 1550nm

Data outside this range is not guaranteed and is for reference only.

Click Here to Download Data

Filter

Traitements Antireflets (AR)

Les traitements antireflets (AR) sont appliqués aux composants optiques afin d'augmenter le débit et de réduire les risques causés par les reflets.

View Now

Une Introduction aux Traitements Optiques

Les traitements optiques s'utilisent pour modifier les propriétés de transmission, de réflexion ou de polarisation d'un composant optique. En savoir plus !

View Now

Comparaison des performances de la géométrie des lentilles

Regardez cette comparaison des lentilles asphériques, achromatiques et sphériques PCX et découvrez l'utilisation idéale pour chaque type.

View Now

Comprendre les spécifications optiques

Do you want to know more about the importance of optical specifications? Learn the different types of specifications and their impact on your system at Edmund Optics.

View Now

SAG Calculator

Future of Spherical Lenses

Traditional spherical lenses are evolving due to the increasing demands of applications. Learn about the future of spherical lenses at Edmund Optics.

View Now

Le noircissement des bords

Des questions sur le noircissement des bords ? Trouvez plus d'informations sur la lumière parasite, la mesure de la BRDF, et plus encore chez Edmund Optics.

View Now

Geometrical Optics 101: Paraxial Ray Tracing Calculations

Do you use ray tracing on a regular basis? Learn more about the calculations aspect, along with steps and software at Edmund Optics.

View Now

Exemples d'Applications Optiques

Systèmes de Détection | Sélectionner la Lentille Appropriée | Élaboration d'un Système de Projection. En savoir plus chez Edmund Optics !

View Now

Understanding Optical Lens Geometries

Optical lens geometries control light in different ways. Learn about Snell's Law of Refraction, lens terminology and geometries at Edmund Optics.

View Now

Precision Tolerances for Spherical Lenses

Optical lenses require very precise tolerances. Learn more about tolerances for spherical lenses at Edmund Optics.

View Now

Conception Optique à Prix Effectif & Tolérance

Are you looking for ways to make cost effective optical designs? Find more information on selecting specifications and using tolerancing schemes at Edmund Optics.

View Now

How do I clean my lenses?

Is it possible to find Plano-Concave (PCV) or Double Concave (DCV) lenses where the diameter is greater than the focal length?

How does reversing the orientation of a PCX lens affect the EFL and BFL in a setup?

Lentille plan-concave (PCV)

Lentille Plan-Convexs (PCX)

Lentille biconcave (DCV)

Lentille biconvexe (DCX)

Lentille ménisque

Advantages of Using Meniscus Lenses in Infrared Applications

Meniscus lenses offer superior performance compared to plano convex lenses in IR applications. Find out the benefits of using a meniscus lens at Edmund Optics.

View Now

Comment concevoir votre propre Expanseur de Faisceaux en utilisant des Optiques de Stock

Comment concevoir votre propre Expanseur de Faisceaux en utilisant des Optiques de Stock. En savoir plus chez Edmund Optics !

View Now

Modifying Stock Optics Tip #3: Turn A Sphere Into An Asphere

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

View Now

I am looking to prototype an illumination system. My objective is to use a small halogen filament bulb and end up with a beam of light. What would be the best lens or lens combination to give me this projected spot of light?

What is the difference between the effective focal length and the back focal length?

What are the benefits of aspheric lenses compared to standard singlet lenses?

Sag

Distance focale arrière (BFL)

Courbure de champ

Prototypage Optique Rapide

Réagir rapidement face au déclin du cycle de vie des produits. En savoir plus chez Edmund Optics !

View Now

Verre Optique

Choosing the right optical glass is important. Find out factors and properties on how to select the right optical glass at Edmund Optics.

View Now

Aberrations

Besoin d'aide pour comprendre la théorie des aberrations ? Venez récapituler quelques concepts fondamentaux chez Edmund Optics.

View Now

La tache d'Airy et la limite de diffraction

Découvrez comment la tache d'Airy, la figure de diffraction provoquée par le passage de la lumière à travers une ouverture, peut avoir un impact sur votre image.

View Now

What is the difference between an inked lens and a non-inked one?

If I want to design with your lenses and lens assemblies, how do I get the information that I need?

Now that I have chosen my lens, how do I mount it?

Erreur sphérique

Lentille singulet

Épaisseur au centre (CT)

Décalage focal chromatique

Distance conjuguée

Épaisseur de bord

Distance focale effective (EFL)

Entraînement à vis à filetage fin

How to Determine Magnification of an Optical Lens Setup

When doing basic imaging, how do you determine the magnification an optical lens will provide?

View Now

Understanding Collimation to Determine Optical Lens Focal Length

Collimated light occurs when light rays travel parallel to each other.

View Now

How to Form an Image with an Optical Lens Setup

Although a common misconception, individual optical lenses do not always form an image when the object plane is placed a focal length away from the lens.

View Now

Modifying Stock Optics Tip #4: Add A Coating To A Stock Lens

Join Andrew Fisher, Manufacturing R&D Engineer at Edmund Optics, as he discusses some tips for modifying stock optical components to fit your application's needs.

View Now

Rayon de courbure

Irrégularité

Traitement BBAR

Dioptrie

Comprendre les spécifications de la qualité de surface

Découvrez les différences entre les spécifications de surfaces de composants optiques MIL-PRF-13830B et ISO 10110-7 en termes de performances et coûts.

View Now

Bord ébavuré

Traitements antireflets (AR)

Biseau

Introduction aux principes de base de l’optique des rayons

Comprendre la réfraction et les principes fondamentaux de l'optique des rayons est essentiel pour comprendre les concepts optiques plus complexes.

View Now

Planéité de surface

Transmission

How do I clean my optics?

Réfraction

Ouverture utile

Intégration de Systèmes Optiques

Are you looking to use integration in your next system? Find out more about integrating in both imaging and non-imaging applications at Edmund Optics.

View Now

Stock and Custom Optics Manufacturing Capabilities

Edmund Optics is a global stock and custom optics manufacturing company with in house optical designers and on-site metrology and environmental testing.

View Now

Sites de fabrication d’EO dans le monde entier

Edmund Optics® (EO) fabrique des millions de composants et sous-ensembles optiques de précision chaque année dans ses 5 sites de production mondiaux.

View Now

La métrologie - un élément clé de la fabrication chez EO

Découvrez la métrologie qu'Edmund Optics® utilise pour garantir la qualité de tous les composants et assemblages optiques.

View Now

Qualité de surface

 
Ventes & Conseil d’Experts
1-800-363-1992
ou consulter les numéros d’autres pays
OUTIL DE DEVIS
facile à utiliser
entrer les numéros de stock pour commencer