1. SUBSTATE CARDE A PREAME AND EADED $\frac{1}{2}$ CONTROL 2. CONTROL 31: Rivery) - 07% = 425 - 675mm 2. Rivery) - 07% = 425 - 675mm 32: Rivery) - 07% = 425 - 675mm 34: ASPHERIC SUBFACE DESCREED BY (RET. COEFFICIENT TABLE) 2. CONTROL $\frac{(l_{ADDITX})^{4}T}{1-\sqrt{1-(1+2)^{-l}}} + D^{-}T' + E^{+}T' + F^{+}T' + G^{+}T' + F^{+}T' + J^{+}T' + J^{+$									
$\frac{2 \text{ CORNEC}}{\text{ St. R}(xyg) \cdot 0.7\% \oplus 425 \cdot 675 \text{ m}} \\ St. R(xyg) \cdot 0.7\% \oplus 425 \cdot 675 \text{ m}$	ZEONE nd=1.5	X: K22R 35	ANNEALED						
SI: Ravg) - 0.7% # 425 - 675m S: Ravg) - 0.7% # 425 - 675m AspHERC SURACE DESCREED BY (REF. COEFFICIENT TABLE) $\mathcal{L}_{arg}(r) - \frac{U_{ADDI,S}^{3+2}}{1+\sqrt{1-0}(-k+)^{4}U_{ADDI,S}^{3+2}}, p^{2+1} + p^{2+1} $								FOR INFORMATION ONLY:	
S2: R(avg) +0.7% & 425 - 675mm AspHERC SURFACE DESCRIED BY (REF. COEFFICIENT TABLE) $\mathcal{L}_{uus}(r) = \frac{U_{kDRIS}^{r}(r^{2})}{1 + \sqrt{1 - (1 + 5)^{n}} \frac{1}{L^{kT}(r)} + 2^{n}r^{n} + 2^{n}r^{n} + 5^{n}r^{n} + 5^{n}$	2. COAINC	6 @ 425 - 675nm					DO NOT MANUFACTURE		
A ASPHERIC SUBFACE DESCRIBED BY (REF. COEFFICIENT TABLE) $\mathcal{L}_{uux}(1) = \frac{(\int_{0.010183}^{1} x^{1/2}}{1 + \sqrt{1 - (1 + 1)^{1/2}} \int_{0.00183}^{1} x^{1/2}} + D^{1/2} + E^{1/2} + F^{1/2} + (f^{1/2} + H^{1/2})^{1/2} + L^{1/2}}$ $\frac{COEFFIECIENT TABLE \underline{A}}{20EFFIECIENT TABLE \underline{A}}$ $\frac{COEFFIECIENT TABLE \underline{A}}{1 + 2 \cdot 2.6179259E-13}$ $\frac{1}{1 + 2 \cdot 2.617925}$ $\frac{1}{1 + 2 \cdot 2.51}$		-						DADTS TO THIS DDAWING	
$\mathcal{L}_{Supp}(T) = \frac{\left(\int_{\underline{k} \in DHIS}^{T} T^{T}\right)}{1 + \sqrt{1 - (1 + k)^{T}} \left(\int_{\underline{k} \in DIOS}^{T} T^{T}\right)} + D^{T} T^{T} + E^{T} T^{T} + G^{T} T^{T} + H^{T} T^{T} + J^{T} T^{T}} + D^{T} T^{T} + E^{T} T^{T} + G^{T} T^{T} + H^{T} T^{T} + J^{T} T^{T}} + D^{T} T^{T} + E^{T} T^{T} + G^{T} T^{T} + H^{T} T^{T} + J^{T} T^{T}} + D^{T} T^{T} + E^{T} T^{T} + G^{T} T^{T} + H^{T} T^{T} + J^{T} T^{T}} + D^{T} T^{T} + D^{T} T^{T} + E^{T} T^{T} + G^{T} T^{T} + H^{T} T^{T} + J^{T} T^{T}} + D^{T} T^{T} + H^{T} +$		-							
$\frac{COEFFIECIENT TABLE \triangle}{\frac{N}{2}}$ $\frac{COEFFIECIENT TABLE \triangle}{\frac{N}{2}}$ $\frac{1}{2} \underbrace{4.515816E-05}_{\frac{1}{5}} \underbrace{5.3054392E-08}_{\frac{1}{2}}$ $\frac{1}{2} \underbrace{2.63598E-16}_{\frac{1}{2}}$ $\frac{1}{2} \underbrace{2.63598E-16}_{\frac{1}{2}}$ $\frac{1}{2} \underbrace{1} \underbrace{1} \underbrace{2.637295E-13}_{\frac{1}{2}} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{52.34}_{\frac{1}{2}} \underbrace{1} \underbrace{1} \underbrace{52.34}_{\frac{1}{2}} \underbrace{1} \underbrace{1} \underbrace{52.34}_{\frac{1}{2}} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{52.34}_{\frac{1}{2}} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{2.517}_{\frac{1}{2}} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{1} \underbrace{1} $	3. ASPHERIC SURFACE DESCRIBED BY (REF. COEFFICIENT TABLE)								
COEFFIECIENT TABLE A D 0 E 4.515816E-05 F -5.005439E-08 G 8.609712E-11 H -2.619259E-13 J J J 2.635988E-16 L 0 REV. A 51 S2 587.6mm S87.6mm 20.52 BHARE CONVEX S87.6mm 20.52 BHARE 14.24 152.34 152.34 NIBRO ACIONE 80-50 S0-50 80-50 CONVEX 621.5 NIBRO ACIONE 0 NIBRO ACIONE	$Z_{ASPH}(Y) = \frac{(\frac{1}{RADIUS})^* Y^2}{1 + \sqrt{1 - (1 + k)^* (\frac{1}{RADIUS})^2 * Y^2}} + D^* Y^2 + E^* Y^4 + F^* Y^6 + G^* Y^8 + H^* Y^{10} + J^* Y^{12} + L^* Y^{14}$								
$ \frac{COEFFIECIENT TABLE A}{DOEFFIECCENT TABLE A} $ $ \frac{COEFFIECCENT TABLE A}{D 0 0} $ $ \frac{K}{E} \frac{1.77}{D 0 0} $ $ \frac{K}{E} \frac{1.75}{5.005439E.08} $ $ \frac{G}{G} \frac{8.609712E.11}{1.4} $ $ \frac{1.2.63598E.16}{L 0 0} $ $ \frac{KEV.A}{S1} \frac{S2}{587.6nm} \frac{25}{20.52} $ $ \frac{FIL @}{20.52} \frac{25}{587.6nm} \frac{25}{20.52} \frac{25}{5$				A		- Ø 25.0 ±0).15	→ 7.4±0.20 →	
$\frac{COEFFIECIENT SI}{K - 1.7}$ $\frac{D}{D} 0$ $\frac{E}{L} 4.515816E.05$ $\frac{F}{F} -5.005439E.08$ $\frac{G}{G} 8.609712E.11$ $\frac{H}{L} -2.619259E.13$ $\frac{J}{J} 2.635988E.16$ $\frac{CONVEX}{L} O$ $\frac{FFL @}{587.6nm} \frac{25}{25}$ $\frac{FFL @}{BFL @} 20.52$ $\frac{FFL @}{BFL @$	COFFFIE								
k 1.7 D 0 E 4.515816E-05 F -5.005439E-08 G 8.609712E-11 H -2.619259E-13 J 2.635988E-16 L 0 REV. A S1 S2 EFL @ 20.52 EFL @ 20.52 Edmund Optics® shape CONVEX CONVEX BFL @ 20.52 Employee Edmund Optics® RADIUS 14.24 152.34 HIRD ANGLE TILE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS CLEAR APERTURE Ø 21.5 Ø 21.5 Ø 21.5 Mice Model TILE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS	r								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
E 4.515816E-05 F -5.005439E-08 G 8.609712E-11 H -2.619259E-13 J 2.635988E-16 L O REV. A S1 S2 587.6nm 25 SHAPE CONVEX CONVEX BFL @ 587.6nm 20.52 COM Eff Com 20.52 RADIUS 14.24 152.34 HIRD ANGLE OF CONVEX 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS SURFACE QUALITY 80-50 80-50 21.5 Ø 21.5 <th< td=""><td></td><td></td><td></td><td>A</td><td></td><td></td><td></td><td></td></th<>				A					
F -5.005439E-08 SECTION A-A G 8.609712E-11 H -2.619259E-13 SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE DIMENSIONS ARE FOR REFERENCE ONLY J 2.635988E-16 SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE DIMENSIONS ARE FOR REFERENCE ONLY REV. A S1 S2 EFL @ 25 Edmund Optics® SHAPE CONVEX CONVEX BFL @ 20.52 Edmund Optics® RADIUS 14.24 152.34 HIRD ANGLE TILE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS SURFACE QUALITY 80-50 80-50 Q21.5 Q21.5 Q21.5 Q100 Q100 Q100 SHEET								─ ─ ┤ ├─ ─(1.05)	
G 8.609712E-11 H -2.619259E-13 J 2.635988E-16 L 0 REV. A S1 S2 S87.6nm 25 SHAPE CONVEX CONVEX BFL @ 20.52 Eft @ 20.52 SHAPE CONVEX S87.6nm 20.52 TILE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS SHAPE O 21.5 Ø 21.5 Ø 21.5 MIRD ANGLE TILE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS									
H -2.619259E-13 J 2.635988E-16 L 0 REV. A S1 S2 S87.6nm 25 SHAPE CONVEX CONVEX BFL @ 587.6nm 20.52 Eff Convert Convert BFL @ 587.6nm 20.52 SADIUS 14.24 152.34 HIRD ANGLE TITLE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS SURFACE QUALITY 80-50 80-50 PROJECTION TITLE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS								SECTION A-A	
J 2.635988E-16 SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE DIMENSIONS ARE FOR REFERENCE ONLY REV. A S1 S2 EFL @ 587.6nm 25 Eff @ 587.6nm 25 Eff @ 587.6nm 20.52 Eff @ 587.6nm 25 Eff @ 587.6nm 20.52 Eff @ 587.6nm 20.52 TITLE DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS SURFACE QUALITY 80-50 80-50 PROJECTION TITLE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS SURFACE QUALITY 00000 24040 SHEET	-								
L O SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE DIMENSIONS ARE FOR REFERENCE ONLY REV. A S1 S2 EFL @ 587.6nm 25 Eff @ BEL @ 587.6nm 20.52 Eff @ BEL @ 587.6nm 25 26 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
L 0 REV. A S1 S2 EFL @ 587.6nm 25 Eft @ 587.6nm 20.52 Edmund Optics® SHAPE CONVEX CONVEX BFL @ 587.6nm 20.52 Edmund Optics® Radius 14.24 152.34 HIRD ANGLE PROJECTION TITLE 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS Surface QUALITY 80-50 Ø 21.5 Ø 21.5 Ø 21.5 Ø 21.5 MET	J		6			IONS SUB IF	CT TO CHAN		
REV. A SI S2 587.6nm 23 SHAPE CONVEX BFL @ 587.6nm 20.52 Edmud Optics® Radius 14.24 152.34 Hird angle PROJECTION 21.5 Surface QUALITY 80-50 80-50 Projection Title 25mm DIAMETER X 25mm FL, VIS COATED, K22R PLASTIC ASPHERIC LENS Clear Aperture Ø 21.5 Ø 21.5 Ø 21.5 Ø 21.5 Mmm DWG NO 01010	L	0							
RADIUS 14.24 152.34 SURFACE QUALITY 80-50 THIRD ANGLE CLEAR APERTURE Ø 21.5	REV. A				587.6nm	25		Edmund Ontion	
RADIUS 14.24 152.34 SURFACE QUALITY 80-50 CLEAR APERTURE Ø 21.5	SHAPE		CONVEX	CONVEX	BFL @	20.52			
SURFACE QUALITY 80-50 80-50 IHRD ANGLE (Construction) TITLE K22R PLASTIC ASPHERIC LENS CLEAR APERTURE Ø 21.5 Ø 21.5 Ø 21.5 Ø 21.5 Ø 21.5 Ø 21.5	RADIUS		14.24	152.34		1		25mm DIAMETER X 25mm EL VIS COATED	
CLEAR APERTURE Ø21.5 Ø21.5 SHEET	SURFACE QUALITY				THIRD ANGLE - PROJECTION	=	TITLE		
BEVEL MAX PROTECTIVE AS NEEDED PROTECTIVE AS NEEDED ALL DIMS IN mm DWG NO 21212 STREET	CLEAR APERTURE		Ø 21 .5	Ø 21 .5		1		SHEET	
	BEVEL MAX		PROTECTIVE AS NEEDED	PROTECTIVE AS NEEDED	ALL DIMS IN	mm	DWG NO	21212 31121 1 OF 1	