Controlling EO-Drive controller via National Instruments LabView
programming

Engineering Technical Support
If you require additional information, contact our technical experts for help.
24 Hour Phone Support
1-800-363-1992 or +1 856-547-3488
Sunday 8:00pm — Friday 6:00pm
Send e-mail to techsup@edmundoptics.com (during business hours)



mailto:techsup@edmundoptics.com

Chapter 1: Introduction

This tutorial is designed to illustrate communication with an Edmund Optics EO-Drive. The
EO-Drive is equipped with a USB digital interface, and communication is performed using
LabVIEW on a computer with a Windows operating system. This tutorial will describe, in
detail, how to create example LabVIEW programs (VIs) from scratch. The purpose is to help
users understand how to communicate with the EO-Drive controller via USB, how to program
certain useful motions, and how the example VI’s are constructed. Completion of this tutorial
will require the EO-Drive USB software has been installed. If this has been done, a folder exists
on your hard drive containing EO-Drive software, manuals, and example VI’s.

This tutorial is written for users with a very basic understanding of LabVIEW, but it is not
intended to be a comprehensive tutorial for LabVIEW. National Instruments provides several
excellent tutorials that should be used to learn about the LabVVIEW programming environment.
In addition, LabVIEW has excellent help documentation, that the user should become familiar.
Each chapter is written as a stand-alone chapter so that readers with more than a very basic
understanding of LabVIEW can skip ahead if desired. Each chapter incorporates and builds on
ideas from the previous chapters. Note that the tutorial does not demonstrate how to produce
every VI on the CD, but if you complete the tutorial, you should be able to build and incorporate
any of the VI’s provided.

LabVIEW can be thought of as a way to make a custom digital controller. This tutorial will
illustrate how to set up LabVIEW V1I’s and how to use them to command your EO Drive and the
objective lens nanopositioning system . It is our hope that after completing this tutorial, you will
understand how our example LabVIEW VIs were constructed, how commands are passed from
the computer’s VI to the nanopositioner, and some of the common ways to move a
nanopositioner. We also hope that after completing this tutorial you will have some ideas of how
to modify these VIs to suit your own purposes.

Before discussing LabVIEW, there are several important concepts to discuss in order to make
your LabVIEW programming tasks easier to understand.

Equipment List
To follow the steps in this tutorial, you will need the following:
1. Edmund Optics objective lens nanopositioning stage
2. Edmund Optics EO-Drive controller with USB interface
3. Windows computer with EO-Drive USB interface driver installed
4. National Instruments LabVIEW installed on your computer

Using a computer to communicate with the EO-Drive

The EO-Drive USB digital interface allows the user to communicate with the objective lens
nanopositioner from a Windows based PC. To make this communication possible, we provide a
dynamically linked library (DLL). A DLL is a compilation of functions that can be called from a
Windows user mode program. A user mode program is an executable program that is written in
a high level programming language such as C/C++, JAVA, Basic, LabVIEW, etc. LabVIEW



owes much of its versatility to the fact that it can be used to make function calls to any Windows
DLL, and it has a specific procedure for doing this. These function calls are referred to in
LabVIEW as a call library function, and the user should consider reading the excellent
LabVIEW documentation on the subject. In this tutorial we will demonstrate explicitly how to
use call library functions to interact with the EO-Drive.

Another important concept of the Windows operating system is the Handle. If you want to pick
up your suitcase, you would grab it by the handle. In Windows, if you want to take hold of a
device, you also want to grab it by the Handle. In Windows, the device Handle is really an
address. In this tutorial, we will show you how to grab a device Handle for the EO-Drive. In
addition, we will show you how to release the Handle when you are done communicating with
the EO-Drive.

The final Windows operating system concept that is important for our customers is the issue of
Windows latency. In user mode programs such as LabVIEW, the Windows operating system
controls all interaction between your program and all other parts of the operating system, DLL’s,
hardware and other programs. User mode programs are not allowed to interact directly with the
PC hardware. That includes all USB, RS232, GPIB or PCI bus devices. The operating system
only allows your program to talk to hardware through a driver, and the driver can only access the
hardware about every 1 millisecond. This means that you can only send or receive information
from your hardware device, like the EO-Drive, every millisecond or so, and this is referred to as
Windows latency.

How do you want to use your nanopositioner?

There is a diversity of applications for objective lens nanopositioning systems. We have
produced general LabVIEW examples that meet the basic requirements of many customers, but
none of the LabVIEW examples have been designed specifically to do your experiment.
Examples are provided so that you can build more complex programs that are tailored to your
exact requirements. We provide several examples for building a scanning program, but you will
have to decide whether to use a saw tooth scan or a triangle scan for your application. In
addition, you will have to make decisions about scan speed, scan accuracy and settling time.

What are the specifications of my nanopositioner?
The specifications of your system are written into the EEPROM of the USB interface, and can be
accessed via a LabVIEW VI.

When you move the stage, you are really changing a command voltage with a DAC (digital to
analog converter). This DAC has 16 bit resolution. If your system has a full range of motion of
100 microns and a 16 bit DAC, then the smallest step, S, you can perform is;

S = 100 pm /65536 = 1.6 nm.
Where is the documentation for EO-Drive.dll?

The documentation for EO-Drive.dll is included on your distribution disk under the file name
EO-Drive_1 _0.doc, but it is also included in Appendix A of this document for quick reference.



Chapter 2: Introduction to the LabVIEW Programming Environment

The goal of this Chapter is to introduce the structure of LabVVIEW programs, and to
review some basic LabVIEW concepts which must be understood before you can create
programs of your own. Subsequent chapters demonstrate using LabVIEW to control an Edmund
Optics EO-Drive. Users already familiar with LabVIEW may wish to skip ahead to Chapter 3.

LabVIEW programs are often created to imitate the function and appearance of a
physical instrument. A LabVIEW program, called a VI (Virtual Instrument), consists of two
separate windows, the Front Panel and Block Diagram.

Bl untitled 1 Frol
Elle Edit Wiew Project

[2]®] & [u]

=10ix|

The Front Panel

Every new VI is automatically created with a Front Panel. The Front Panel
contains the controls and indicators which allow the user to manipulate the
operation of the VI. Any Control or Indicator created here is also

. automatically placed on your Block Diagram.

Ope

=l

L iy
Block Diagram
-mix| Every new VI is automatically created with a Block Diagram. The Block
" "= mj=i Diagram contains the code of the VI. The values of Front Panel
Al components can be read and assessed within the Block Diagram. The
Block Diagram can also pass data to the Front Panel to be displayed on
4| graphical indicators. Think of the Block Diagram as the guts of your
L 441 virtual instrument.
Controls and Indicators
Mumetic Any parameters of the LabVIEW program that must change according to
do | the user’s specifications should be editable via the Front Panel. This is
Y— accomplished by first creating a Control on the Front Panel, then using the
e Control within operations on the Block Diagram. Indicators are used to

transfer info from the Block Diagram to a display visible from the Front
Panel.

Wire Connections

After a component of the Block Diagram performs an operation, any data it has generated can be
passed to other Block Diagram components via wire connections. Therefore, the Block Diagram
will contain a mixture of components interconnected with wires. The sequence of images below
demonstrates the method of creating wire connections in LabVIEW:

Conkrol

Conkrol

Conkral

Conkral




Adding Components to the Front Panel/Block Diagram

Controls and Indicators are examples of components that can be added to either the Block
Diagram or the Front Panel of the LabVIEW V1. However, many components exist which can be
added to the Block Diagram but not the Front Panel, and vice versa. LabVIEW allows the
programmer to add Controls to the Front Panel, and Functions to the Block Diagram. Therefore,
things that can be added to the Front Panel are found within the Controls Palette (including
indicators), and things that can be added to the Block Diagram can be found within the Functions
Palette.

The Controls Palette

The Controls palette is available only on the front panel and contains the controls and indicators
you use to customize the Front Panel. This makes sense because you are trying to create a virtual
instrument, and the knobs, displays and switches always go on the Front Panel.

The Functions Palette

The Functions palette is available only from the block diagram. The Functions Palette contains
the SubVIs and functions you use to build the block diagram. The basic palette (depending on
the level of your LabVIEW license) contains a wealth of preprogrammed functions which can be
used to construct your virtual instrument.



Chapter 3: Creating a LabVIEW VI to Control an EO-Drive Axis

You will be creating a LabVIEW VI that commands a user entered value to the EO-Drive. The
EO-Drive’s USB interface interprets a write command as a position in microns; this value is then
converted to a voltage by the on-board DAC (Digital to Analog Converter). The resolution of the
position command is therefore determined by the underlying resolution of the DAC. Likewise,
the smallest step size of your stage will be determined by the DAC resolution and the range of
motion of your stage. Before and after changing the position, the VI waits 100 milliseconds to
mimic performing additional tasks.

Topics Include:
1. Basic editing of the Front Panel of a LabVIEW V1.
Basic editing of the Block Diagram of a LabVIEW VI.
Interfacing with the EO-Drive using the EO-Drive.dll.

2
3
4. Referencing the EO-Drive_1_0.doc for function information (see Appendix A as well).
5. Using Structures, Timers, and other LabVIEW components to control dataflow.

6

. Accessing functions within the EO-Drive.dll via Call Library Function Nodes.

The VI shown below will be created in Chapter 3:

=1ojx|

Fle Edt Wiew Froject Operate Tooks Window Hslp

(@[ 1] [ L3 Dizlog Fort |- ”E"E”{%I

L4 Y
(Image of the finished Front Panel by the end of Chapter 3)




B} Single Command.vi Block Diagram * 10| x|

File Edt View Project Operate Tools Window Help |@
[ 20 e = e e e o = | [ BRI
N HeHeHeHeReNeReReNeH:NeHeHeH=NeReReHeHeHSHeHeHeReNeRsHeNeHSHCHSHSHeNeNoHeNeN:HeHCHSHSNeNoReNeN:HeHeHeNSHeNeHeReReHoReNeNeHeNeHeHeNeReHeNeHeHeNeNSHeRsNemsueHeHeHeHeHemenenenenen=y|
Release all handles. Get the handle of Command the device Release the handle
the device of the device
Perform tasks before Perform tasks after
commanding the device command commanding the device
iz
ReleaseAlHandles InitHandle ReleaseHandle
 — —
handle
3
SNsNsNeNsNsNeNsNsNsNsNsNeNeNsnuNsNsReNsNsNsNeNeNansNeNshsNsNNeNeNenNeNeNsNsNsNsNsNeNaNNsNeNsNsNeNsNsNensNsNeNeNsNuneNsNensNsNsNeNeNeneNeNsNeNsNsNeNsenmgsNensNsNsRNeNenunnune ]
Le | iy

(Image of the finished Block Diagram by the end of Chapter 3)

Section 3.1 - Preparing the Front Panel interface

Project Goal

In this section you will create a Front Panel containing all the necessary elements to make some
simple EO-Drive commands. The Block Diagram will not be edited within this section.
Complete all steps of this section to create the Front Panel depicted below.

Note: Although the properties of the Numeric Controls/Indicators are modified

Wy within this section, the modifications have been limited to data type and label.
Experienced LabVIEW users are encouraged to skip the intermediate steps and
build the application according to the picture and description presented at the
beginning of this section.

[ single Command.vi Front Panel * =10l =]
File Edt View Froject Operste Took Window Help

(@[ 1] [ L3 Dizlog Fort |- IM@”@

command handle
:)IB———- d

L4 [ 217
(Image of the finished Front Panel following completion of Section 3.1)




3.1.1 Start a new VI, and create the Numeric Control

e Begin LabVIEW and start a new VI by New
selecting Blank VI from the Getting Started ) Blank Y1
Window. The Front panel and Block Diagram &% _
of a new VI appear. e Empty Project

'jgg YI from Template. ..

¢ Right Click anywhere within the Front Panel 3 More. ..
area (seen below) to access the Controls

menu.
! Untitled.¥i Front Panel -0 x|
File Edit Wiew Project Operate Tools Window Help J
— — T e
|:{>|{§_}| @IE| 13pt Application Fant |vl|;mvl|.n-vl|ﬁv”t‘§'}vl 1
=
o—HlICantrals Q Search
Express »
[ a’l — |
b A <—1IMUmEtic Controls
Mum Ckrls Mumeric Control
M N 10- 10-
Mty gz - - | 3
m / "5 05 i ol
User Ctrls T Ckrl Fill Slide Pointer Slide Fill Slide Pointer Slide
b i i
abe r e | r ko |
Y £ i
Text Inds Knob Dial Color Box
User Caontrols F

Select a Contral. ..

Wision 4

&

4| | oy

e Hover your cursor over the Num Ctrl button. The Numeric Controls window appears on
top of the Controls window.

U Note: If you’re having trouble locating a specific control, left click the Search button to
£ | search by name via an automated search.

e Left click the Num Ctrl button that appears on the Numeric Controls window. The
windows vanish and your cursor takes the shape of a hand. You are now holding the
footprint of a Numeric Control which will later be used as your position control.



o Left click anywhere within the front panel to place the Numeric Control.

B Untitled 2 Front Panel * =0

|Ei|e Edit ‘iew Project Cperate Tools  Window H@
m ®|||I 13pt Dialog Font

AP

Note: The Numeric Control’s value can be changed regardless of the state of the program
(running/not running).

3.1.2 Editing Data Type

¢ Right click the Numeric Control and select Properties from the pop-up menu. The
Numeric Properties window (seen below) opens into the Appearance tab.

= Mumeric Properties: Mumeric 2 gzﬁl
-~ Label -~ Caption
¥ visble I~ Visbls
[rumeric 2 |
% Enabled
Height Width
£ Dasbied | = | s
" Disabled & grayed
gk en

e This Control will be used to command the stage to a position, so change the text within
the Label text field from “Numeric” to “command”.

e Next, click the Data Type tab.



e Leftclick the data type representation button, and select DBL from the menu that appears.
{‘;E&E.}E@
Note: It’s important to match the data type representation of the control to the data type
expected by any functions using the control.

-

e Click the OK button near the bottom of the Numeric Properties menu to accept the
changes and exit the menu.

¥l Numeric Properties: Position Control x|
Appearance  Data Type | DataEntry | Display Format | Documentation | Data Eizlz

Representation

Ramgg ———————————————
Minirnurn
0.0000

Maximnum
0.0000

Desired delka
0.0000

3.1.3 Create the two Numeric Indicators

Error Checking with Indicators

You will now create the Numeric Indicator used to display the handle. A handle must be
acquired in order to communicate with the EO-Drive. Though it is not typically necessary to see
the handle, beginning programmers should use the handle indicator as verification that the EO-
Drive was loaded successfully.

e Right click over any empty area of the Front Panel and hover your mouse over the
Numeric Indicators button. Two menus should be open now, the newest being the
Numeric Indicators menu.

—IHICantrals Search
Express *
e Left click the upper-left most T 'Y =
icon; the Numeric Indicator. oo e Buttons Text Cis
i SE .
- EalR * «—{HNumeric Indicators
° Leﬂ Click again to place the User Ctl;ls Fum Indf Mumeric Indicakor
Numeric Indicator. .. =1 - -
Text Inds Graph Indicat. .. Murm Ind Progress Bar Grad Bar Pr
User Controls g r‘ﬂ_;' ‘;]
H H elect a Contral... L £ o
e Edit the properties of the Select 2 cansl A :

Wision Meter Gauge Tank T

indicator. Make its data type
132, and change its label to
“handle”.

&

10



Section 3.1 Completed

We have completed the goal of Section 3.1. Our Front Panel now contains all the elements
required to proceed into editing the Block Diagram. Also, the properties of all our controls and
indicators have been set appropriately for their future applications.

[ single Command.vi Front Panel * =10l ]|

Fle Edt Wiew Froject Operate Tooks Window Hslp

(@[ 1] [ L3 Dizlog Fort |- |M@‘@

command handle
B 0

Ll | bz

Section 3.2 - Preparing the Block Diagram

By the end of this section, you will have a Block Diagram equal to the one depicted below. Once
again, experienced LabVIEW users are encouraged to assemble the Block Diagram according to
the picture. The dll function calls (yellow icons) appearing in this image are: (from left to right):
1. EO_ReleaseAllHandles 2. EO_InitHandle 3. EO_Move 4. EO_ReleaseHandle.

| single Command.vi Block Diagram * - |E||5|
File Edit Wew Project Operate Tools ‘Window Help |@
(]| @[n][@] (2] [sa]@ ]| 130 piclog Font | [3=-][Te-] (25~ ]=al | i
o0 0000000000000 o000 00000000 D0 0000000000000 o0 0000000000000 o000 00000000000 OOo0000000000n0 ;I
Release all handles. et the handle of Command the device. Release the handle
the device. of the dewice
=
Perform tasks before Perform fasks affer
commanding the device. command cormmanding the device.
ReleaseAllHandles InitHandle RREICaSEancls
i 1 1 WEN NE
O00000000000000000000000000000000000000000000000000000000000000000000000000000000000000010 -
Kl | 1

(Image of the finished Block Diagram following completion of Section 3.2)

Introduction to the Block Diagram

The Block Diagram of a LabVIEW VI contains the code to activate the Front Panel. The
components and connections of the Block Diagram are essentially the inner-workings of the
virtual machine. Code execution generally flows from left to right. In the image above, execution
would begin with the dll function call to ReleaseAllHandles.

11



DLL (Dynamically-Linked Library) Function Calls in LabVIEW
The Call Library Function Nodes appearing in the image above, and at left, call

o i o functions from the EO-Drive.dll. Simply put, the EO-Drive.dll is a container of

I tools, or functions, used to communicate with the EO-Drive. In LabVIEW these
o i 2 functions are accessed via Call Library Function Nodes. At left are images of two
. T separate Call Library Function Nodes. The lower one calls a function with

input/return values. The user is encouraged to read the LabVIEW documentation
for a more detailed explanation of Call Library Function Nodes.

3.2.1 Accessing and Understanding the Block Diagram

e Hold Ctrl and press E to access the Block Diagram from the Front Panel. Alternatively,
you can toggle between windows using the menu bar item: Window>>Show Front Panel.

Block Diagram: Controls and Indicators

Each time a control or indicator is created on the Front Panel its Block Diagram representation is
created here. The two elements you see correspond to a Front Panel Control and Indicator of the
same name which we created in the previous section (your icons may appear larger and more
box-like; the difference is purely aesthetic).

It is important that your Block Diagram matches the one depicted below. The arrangement, and
icon appearance, of the components is irrelevant at this point. Pay particular attention to the data
types (U32, 132, and DBL) and whether the arrow appears on the left side (Indicator) or right
side (Control) of the component.

[ single Command.¥i Block Diagram * - |EI|1|
Eile Edit Miew Project Operate Tools Window Help

[
(2@ @[m][@][2] [wal@] o [ 130t Dislog F{ =

cl
|L e

command

- I

-

I vl

wititg  Note: Hold Ctrl then press E to switch back and forth between the Front Panel and
Block Diagram. Alternatively, from the Front Panel menu bar, select: Window>>Show
Block Diagram.

12



3.2.2

Create the Flat Sequence Structure

Right click any empty area of s F0Functions
the Block Diagram. The S
Functions menu appears. %
Hover the mouse over the InpUt>
Exec Control icon. A second e
window appears on top of the Sig Manip

Z

Signal Analysis

o

Exec Control

Fawvaorites

first.

User Libraries
Select a VI...

Left click the Flat Sequence

s

icon. The windows vanish
and your cursor is replaced
with a box traced with a
dashed line.

Q Search

3
M
8.
Cukput
3"

o=IHJExecution Control

Flak Sequence Structure
|o®

& " 4] [llll"‘.;:

‘While Loop FlaSeguence  Case Struckure
Time Delay Elapsed Time

Left click any empty space within your Block Diagram, move the mouse about four
inches diagonally and left click again to finish creating a Flat Sequence Structure of a
size equal to the box you just dragged (alternatively, you could have left clicked and held
to create the structure. Upon releasing the left button the Flat Sequence Structure
appears.)

completely finished.

The Flat Sequence Structure
Flat Sequence Structures help the programmer to control the execution of
the program. The execution flow of a frame of the Flat Sequence Structure
is guaranteed to not trigger until the nearest preceding frame has

Adding Components to the Flat Sequence Structure
Any component that was overlapped by the creation box has been added to the Flat Sequence
Structure. Components can be drag-and-dropped in and out of the Flat Sequence Structure. Try
putting some in, and then drag the Flat Sequence Structure around. You’ll see that the
components inside move with the box. However, if you drop
the Flat Sequence Structure on top of outsiders; either the
component, or the Flat Sequence Structure, will appear
hovering above the other (try not to let this happen on your
Block Diagram).

3.2.3

Add Frames to the Flat Sequence Structure

Right click the top, or bottom, grey border of the Flat

Sequence Structure.

Select Add Frame After from the list that appears. A

second frame appears after this one.

g
Visible Ikems [
Help
Examples
Description and Tip...
Set Breakpoink

Struckures Paletke 2
= J Buko Grow
"~ Replace with Stacked Sequence
Replace with Timed Sequence
Remove Seguence

ﬂ Add Frame After
Add Frame Before
[elete This Frame

13



3.24

The finished Block Diagram (as depicted in the image at the start of Chapter 3, Section 2)
contained a Flat Sequence Structure with six frames. Continue adding frames to your Flat
Sequence Structure until you reach six.

Let’s continue to match the image of the finished Block Diagram. Drag the ‘command’
Control into the fourth frame (the Flat Sequence Structure will auto-expand to fit the
control if need be.)

Drag the “Handle” Indicator to the fourth frame.

Verify your diagram appears very similar to the image seen above. The numbered boxes
distinguish what is meant by “frames” of the Flat Sequence Structure.

Add a Timer

Good Timing

The diagram we are building makes use of Timers to synchronize data flow. In more complex
programs, Timers are often placed before and/or after a command to control the command rate;
however, this program uses the Timers only as a means of mimicking time spent performing
tasks before and after the command. We will use a Millisecond Timer.

The Wait (ms) timer

The Millisecond Timer halts execution of the Block Diagram for a number of
milliseconds equal to the numerical value passed to its input. This type of Timer requires
an input. The input could come from a Numeric Control, allowing the user to alter the
wait time from the Front Panel. However, to keep the example simple, this tutorial uses a
Numerical Constant.

Right click any empty area within the Block «=JH0Functions Q, search
Diagram to open the Functions menu. Express »

- M m’ M
Left click the bottom item of the menu (a % A %"
double down arrow) to expand the menu. We Input Signal Anialysis Output
can now see the full list of LabVIEW function *Eib ’ =zt
categories. B @ [

Sig Manip Exerc Control  Arith & Compar

Hover your cursor over the Programming Favarites ¢
category. A new menu appears containing all =" tiraries '

Seleck a V...

sub-categories associated with programming.

Hover your cursor over the Timing icon. A third window appears containing an
assortment of timing functions.

14



»—IE0Functions q Search
e Left click the Wait (ms) icon.

Measurement Ij0 ' o ~Hrragramming

The three windows vanish, and  mstrumert o ) o

1 Wisi d ki ] 4 4

you should_now be holding the o ang on = gﬂ_

Icon for a tlmer Signal Processing I Structures Array Cluster, Class

Data Communication ' 1Inf>’ ¥ ’

. . .. . C vt ) .

e Bring the icon inside the third i peuan e smusten \ Nenet MDD booe
frame of the Flat Sequence SianalExpress ) " B

¢ o—1F0Timning

=]

El

5
8

o

Structure and left click to place

the timer there.

Bl

Tick Count {ms) ‘ait (ms) Wait Until Me. .. To Time Stamp eaveForm
. o
e Expand the third frame of the E &,
Flat Sequence StrUCtu re to add Get DatefTim... Get DatefTim... Date/Time To... Seconds To D... Time Stamp C...  Braphics & So...

some working room. To | £
expand the frame’ brlng your L Time Delay Elapsed Time Format Date/...

mouse cursor within the frame - [
so that eight small resize boxes :

appear along the border. Left click and horizontally drag a left or right side box to your
desired size.

T

e Hover your cursor over the Timer. The input (a blue dot) should appear on the ﬂ‘E‘
left side of the Timer.

e Hover your cursor over the input (left terminal) of the | ==
Wizible Items

Timer and right click. A menu opens (as seen to the 3
right). Help
Examples
e Hover your cursor over the Create category. This el o =1 1 s
gives us a list of items to create pre-wired to the input 5et Breakpoint
of our Timer. Timing Palette 3
Murneric Palette 2
e Left click Constant. The windows vanish and a blue P |  gonstant
box containing the number zero will be created to the Replace b Control

left of the Timer. This is a Numeric Constant, and it Indicator

should be wired to the input of your Timer (if it isn’t,
wire it now. Refer to Chapter 2: Wire Connections for wiring assistance.)

e Left click once on the number ‘0’ and replace it with the number “100”. The third frame
of your Flat Sequence Structure should now match the third frame as depicted in the
image presented at the start of Chapter 3, Section 2.

199089 Note

Don’t bother creating the second Timer at this point. Near the end of section 3.2 you
will be asked to create the Timer based on the skills you’ve acquired.

15



3.2.5 Creating a Call Library Function Node

e Right click an empty area within your Block Diagram to access the Functions menu.

e Once again, left click the bottom item (a double down arrow) to expand the list of

function categories.

Hover your cursor over the
Connectivity category. A new
window opens.

Programrming
Measurement IjO
Instrument IO
Vision and Mation
Mathematics

Signal Processing

—IHFunctions Q Search

Data Communication

Caonneckivity

e On the Connectivity menu, hover  “cantol besian & Smuiation

—IFIConnectivity

3
3
3
3
3
3
3
3
]
'
]

your mouse over the Libraries i ’r S
and EXGCUt&b'ES |C0n E o—{FlLibraries & Executables
% @ %—: Libraties & Ex... Call Library Function Mode
. . Input Signal Analysis Output _"

* Left CIICk the Ca” le':ary @ @b E Multisim Tools  CalLibrary F... Codea... Systc.vi
FunCtlon NOde The Wi ndOWS Sig Marip Exec Control  Arith & Compar het B activo " &
vanish and you are now holding s = Input—,ﬁe f‘"’“ﬁ, Wind—,m%g

H avotites ] '
a fOOtprInt Elser Litbraries ]
Select a V...
n HE n . .
e Place the 11 Call Library

Function Node within the First frame of the Flat Sequence Structure.

Call Library Function Node: Configuring to release all Handles.

To communicate with the EO-Drive we must be able to identify the EO-Drive by its Handle.
Before we can identify the EO-Drive by its Handle we must first tell the dll to acquire a Handle
for the EO-Drive. You are now configuring an EO-Drive.dll function which instructs the dll to
release any Handles it currently has. This is an important task to do before ending the VI.
Failure to release a Handle may cause problems for VI’s used later that attempt to communicate
with the same EO-Drive.

e Right click the newly created component, and select Configure from the menu that

appears (or double-left click the component). Within the next few steps, we will set your
Call Library Function Node to match the one seen below.

e Leftclick the browse icon. El

e Locate the file “EO-Drive.dll”. The file was automatically installed onto your hard drive
when you first installed the EO-Drive software.

e With the EO-Drive.dll selected as the Library to access, the Function name list has been

automatically populated with all the usable functions. Left click the arrow at the right of
the list to display all available functions.

16



Function | Parameters | Callbacks | Error Checking |

Library name or path

Thread
CHED-Drive.di (= |

& Runin LI thread
¢ Runin any thread

[ specify path on diagram

Function narme

|EO_ReIeaseF'.IIHandIes j Calling comvention
& skdcall (WINAPT)
i C

Function protokype

void EQ_ReleaseslHandlesvaoid 1;

(04 I Cancel |

Help |

e Select EO_ReleaseAllHandles from the list. The Function tab of your Call Library

Function Node should now exactly match the image above.

e The function, EO_ReleaseAllHandles, doesn’t require that we add or edit any parameters.
All other tabs should be left at their default settings. Left click OK to accept the changes

we’ve made.

e A dialog box will appear to inform you that the parameters will be automatically set to

void. Click OK. This Call Library Function Node is complete.

e Verify that your Block Diagram closely resembles the one depicted below.

17



1000000000000 0000000

O000000000000000000000

OO0O000000000000

ReleasehliHandles

command

g

OO0O000o000000000o0o0o00n

OO00O000000000000000000 0

OO0OO00000000000 0

Note

Your Call Library Function Nodes may be set to a more compact display type than seen

£ above. To display the name of the function being called, right click the Call Library
Function Node and hover your mouse over the Name Format category. Here you can

toggle between Names, or No hames.

3.2.6 Acquiring a Handle

You will now create the Call Library Function Node which calls a function to acquire a Handle

for your EO-Drive. By the end of this section you will have a functioning VI that will, among

other things, grab a Handle for your EO-Drive and display it on the Front Panel via the “Handle”

Numeric Indicator.

Accessing the LabVIEW Help Document on Wire Connections

You will soon be creating wires to connect the components you’ve created. This would be an

excellent time to review the LabVIEW Help documentation regarding wire connections.

LabVIEW Help documents can be accessed via the Help>>Search the LabVIEW Help... menu

item. The image below demonstrates locating a document by navigating the Contents tab of the

LabVIEW Help viewer.

Contents ||ﬂdE:-: I §earch| Favorjtes

LabvIEW Help
Finding Example |z
Glogzary

@ Using Help

= Eﬂ] Fundamertals

= ([ Concepts

@ Lab¥IEWw 8.5 Features and Changes
@ Activating LabivIEW Software

@ LabtIEW Documentation Resources
@ Gietting Started with LabviEWw

@ LabivIEW Environment
@ Building the Front Panel
= ([0} Buiding the Black Diagram

@ Block Diagram Objects
Functions Overview

@ Express ¥z
Izing "wires to Link Block Diagram Objects

18



e Create another Call Library Function Node either by repeating the steps described above,
or by copying and pasting.

e Place it into the second frame of the Flat Sequence Structure.
e Enter its Configure menu.

e Direct the Library name or path to the EO-Drive.dll using the browse button, as done
previously.

e Under Function name, select EO _InitHandle.
e Left click the Parameters tab at the top of the Configure menu.

k= Call Library Function x|

Function ~ Parameters | Callbacks | Errar Checking |

_‘I — urrent pararneker
Marme |hanu:||e
5 Type INumeric j
Conskank
@ Data bype ISigned 32-hit Integer =

Function protokype
int32_t EO_InitHandledvoid );

Ok I Cancel | Help |

e Inthe Current parameter area, replace the name “return type” with the name “handle”.

e Change Type from “void” to “Numeric”. Two new settings should appear; Constant, and
Data Type.

e Change Data Type to “Signed 32-bit Integer”.

e Left click OK to accept the changes.

19



SEREEERS Note

The appearance of this Call Library Function Node should have slightly changed. If the
Names format is checked, the handle parameter now protrudes from the bottom of the
Call Library Function Node. With the No Names format checked, an 132 has been
added to the output (right) side of the Call Library Function Node (hover your cursor
over the blue “132” output and LabVIEW will show you the name.)

- From the Block Diagram, left click the blue 132, or Handle output, on the
EO_InitHandle Call Library Function Node. You are now dragging a wire out of this
output.

1000000000000 0000000000000000000000000000000000000000o0o0o0o0oaQn

command

fHzsf

FeleaseAlHandles

nitHandle || [ o

OO0 0000000000000000000000000000000000000000000000000000000

e Left click the input of the “Handle” Numeric Indicator. A wire has been automatically
created from the output of the EO_InitHandle function to the input of the Numeric
Indicator.

Wire Connections and Tunneling

You’ll notice LabVIEW has a special way of bridging Flat Sequence Structure frames; a blue
box has been created at every junction. The blue box is called a tunnel; and it allows data to flow
in, out, and between, frames. To learn more about this, read the LabVIEW Help file on Flat
Sequence Structures, or read the enclosed glossary definition for tunnels.

3.2.7 Running the VI
e Turn on the EO-Drive.
e Switch back to the Front Panel (Ctrl + E.)
o In the top left corner of the Front Panel, there should be an unbroken Run[2>] icon. If

your Run icon appears broken @ , left click it to receive a list of errors in your program.
LabVIEW will not allow the VI to run until all errors have been eliminated.

20



3.2.8

Run the VI by left clicking the Run button. The VI runs for 100 milliseconds then. A
number should now be present within the text field of the “Handle” Numeric Indicator.

Switch to the Block Diagram of your VI. The Block Diagram offers a few additional
ways to run the VI. These can be seen to the right of the Run icon.

Left click the Highlight Execution icon . The bulb within the icon should light
representing that your VI will now run in Highlight Execution mode.

From the Block Diagram, and with Highlight Execution on, left click the Run icon to run
the VI. LabVIEW will now slowly step through every phase of your program and present
to you a visual representation of what is being done.

Try single-stepping through the entire V1. Single-stepping puts you in complete
control of the speed of execution, the VI only advances for each click of the single-step
button. When you want to stop, left click the red stop button.

Make sure your VI is stopped and Highlight Execution is turned off before continuing. If
your VI is running the Run icon is a solid black arrow " . Press the Stop icon to stop

execution If Highlight Execution is on, its toolbar icon will be a lit light bulb. Left
click the icon to shut off Highlight Execution.

Writing to the EO-Drive DAC

Create a Call Library Function Node.

Place it within the fourth frame of the Flat Sequence Structure.
Enter its Configure menu.

Set the Library name or path to the location of the EO-Drive.dll.
Set the Function name to “EO_Move.”

Switch to the Parameters tab.

Change the name of the “return type” parameter to “Error code.”
Change the Type of the Error Code parameter to “Numeric.”

Leave the Data type of the Error Code parameter as “Signed 32-bit Integer.

Left click the Add a parameter button two times.

21



e Check the Function prototype of your Call Library Function Node. It will be located near
the bottom of the Parameters tab of the Configure menu. It should read:

int32_t EO_Move(int32_t argl, int32_t arg2);

Interpreting the Function Prototype

The function EO_Move is now configured to receive two arguments (argl and arg2), both of
type “int32_t”, and will return an Error Code as a Signed 32-bit Integer. Compare this to the
actual prototype for the function EO_Move as it appears within the EO-Drive_1 _0.doc. You will
notice that we are not finished configuring the function parameters...

e Change the name of “argl” to “handle”.

e Leave the Type as Numeric, leave the Data type as Signed 32-bit Integer, and leave the
Pass as Value.

e Change the name of “arg2” to “position”.
e Leave the Type as Numeric, but change the Data type to 8-byte Double.
e Leave the Pass as Value.

e Once again, check the Function Prototype. It should reflect the changes we’ve made.
Compare this to the actual prototype of the EO_Move function as it appears within the
EO-Drive_1 0.doc.

int EO_Move(int handle, double position)
(The EO_Move function as it appears within the EO-Drive_1_0.doc)

int32_t EO_Move(int32_t handle, double command);
(Your EO_Move function as it appears in the Function prototype area of the Configure menu)

Interpreting the Function Prototype; Part 2

The declaration int32_t is equivalent to declaring the variable simply as int in most programming
languages. Your Call Library Function Node is now properly configured to call the function
EO_Move.

All parameters must appear in the exact order depicted above. If necessary, use the up and
down |=2] arrow buttons to rearrange the order of the parameters.

e Leftclick Ok to accept the changes. The Call Library Function Node has become taller,
compensating for the added parameters.

22



100000000000 000000000000000000000000000000000000000000000000000.70

ReleasehllHandles

command

fzap

Mloe
nitHandle || [0 n BB

| EH
TR |13
1

O0DO0000000000000000000000000000000000000000000000000000000000000

LLLLLL ¥

>

-Note

Avoid congested Block Diagrams. Don’t allow components to overlap wires, and make
sure wire connections are clearly depicted as entering the proper input. Expand the
frames of the Flat Sequence Structure if you need more room to work.

Interpreting the Function Prototype; Part 3
Unlike the Call Library Function Node for the EO_ReleaseAllHandles function, the EO_Move
Call Library Function Node requires you to input data. Also, the function “returns” (outputs) an
error code (or returns “0” if no error occurred).

3.2.9

Release the EO-Drive handle

Create a Call Library Function Node.

Place it within the sixth frame of the Flat Sequence Structure.
Enter its Configure menu.

Set the Library name or path to EO-Drive.dll.

Set the Function name to “EO_ReleaseHandle.”

Switch to the Parameters tab.

Leave the “return type” parameter as “void”

Left click the Add a parameter E button.
Change the name of “argl” to “handle.”
Leave the Type as “Numeric”, and leave the Data type as “Signed 32-bit Integer.”

Leave the Pass as “Value.”

23



Your function prototype should now appear as:

void EO_ReleaseHandle(int32_t handle);

e Left Click Ok to accept the changes.

3.2.10 Connect the wires, and create the second Timer

It is now time to create the remaining wire connections. The following instructions include every
step necessary to accomplish this. However, if a wire is accidentally placed, or overlaps other
components, refer to Chapter 1: Wire Connections for supplementary assistance.

e Configure the EO_Move Call Library Function Node to display Names (right click the
component and select Names in the Name Format category.)

e Expand the frames of your Flat Sequence Structure so that no component is within an
inch (25mm) of an edge. This will give you enough room to make the wire connections.

""""Q Note
Make Coherent Wire Connections. After connecting a wire, left click to select a section
of it. Vertically traveling wires can be moved horizontally, horizontal wires can be
moved vertically. Wires can be selected and moved one pixel at a time with the arrow
keys. Avoid overlapping components with your wires whenever possible.

e Left click the left side of the handle parameter on the EO_Move Call Library Function
Node. You are now drawing a wire, connected at one end to the Handle input of the
EO_Move function.

IO000000 0000000 0000000000000 000000000000000000000000000000000000000000°7°C;

command

Jioal

Mowe
FeleaseAlHandles EC_M
. e 'E]Ei'rmr-mc'd‘: - ReleaseHandla
-=! n i 100 2
-- InitHandle P A hards + 2 -EF- n
FEEN FET]

handle

0 m— fzs]

FET]

OO0 O000000000000000000000000000000000000000000000000000000000000000000

e Left click on the existing wire that passes into this frame. The wire passing into this
frame comes from the EO_InitHandle function, and it is being passed to a Numeric
Indicator. The EO_Move function now receives the same Handle as the Numeric
Indicator.

24



e Connect the output of the “command” Numeric Control to the command input of

EO_Move.

e Connect the handle output of EO_Move to the input (left) side of EO_ReleaseHandle.

This instructs LabVIEW to pass the handle through EO_Move and into

EO_ReleaseHandle. Alternatively, you could take the handle from before it is passed into

EO_Move.

1I0O000 0000000000 0000000000000 0000000000000000000«010100

OO000000000000000000¢0C

ReleaseAlHandles

InitHandle

love

» BRED Maove ,,

ReleaseHandle

Error code

.'!EE.'!

handle

| ——

I
TR %

D000 00000000000000000000000000000000000000000000070

O000000000000000000

e Create another Timer that will halt execution for 100 milliseconds. Rather than copying
and pasting the Timer into existence, recall how to create it via the functions palette.
Place this Timer within the fifth frame of the Flat Sequence Structure (don’t forget to set

the number of milliseconds to wait.)

Section 3.3 — Command the EO-Drive

The Block Diagram is complete. Take a look at the Run arrow; it should be the normal image of
an unbroken, white, arrow. However, if the Run arrow appears broken; the Block Diagram of
this VI contains errors.

Troubleshooting a VI

LabVIEW will not allow a VI to run while errors exist on the Block Diagram.
Examples of such errors include an open/unconnected input or multiple outputs
@ are wired together. Left click the broken Run arrow (seen at left) and LabVIEW
will help you find the errors. If there is an open input, take a look at the image
below to assist you in finding the correct connection. Also, this would be a good
time to verify that all Indicators, Controls, and Function Parameters, are set to the

correct Data Types.

25



Note
Connecting together components of different Data Type Representations will not
generate an error. Instead, LabVIEW automatically converts the data which is passed.
Therefore, it is entirely up to you to verify that your Data Type Representations are
correct.

k> Single Command.vi Block Diagram *
File Edit Wew Project Operate Tools ‘Window Help &
S A 25 e [ = [
—————————————————————————————__——_—_—_———————————————————————————— =l
Release all handles Getthe handle of Command the device Release the handle
the device. of the device
i
Perform tashs before Perform tasks after
commanding the device. command commanding the device
iz
ReleaseAlHandles InitHandle Q BT EEERE B E
i ! e terfee]
handle
Tn
[ s NaNulialsNslsNsNlsNulsisNslnisisisNslaislsNsisNslslsNulsislslislsNslslslaisNslsisNslsisishslslslislsNsislslslslalsislslsislsisNslniislsNsisislslslaisisisiisislsisisiniislsisislsisi; -
Kl o[

P single Command.vi Front Panel *

File Edit “iew Project

Qperate  Tools

Window Help

M@ @ !!I 13pt Dialog Font |1|EI|H

g

(Image of the Completed VI’s Front Panel after a single Run.)

26



3.3.1 Enter Valid Command Parameters

e Turn on the EO-Drive.
e Switch to the Front Panel of your VI.

e Enter a position to move to into the “command” control. Choose a micron value within
the range of motion of your stage.

e Run the VI. The “Handle” indicator should show a non-negative number, and the stage
should have moved to the specified position.

Project Completed
Completion of this Chapter has resulted in a VI that will write a position command to the EO-
Drive. The following Chapters will build upon the skills acquired in this Chapter.

27



Chapter 4: Create a SubVI for Commanding the EO-Drive

The VI shown below will be created in Chapter 4.

=) CommandED.¥i Front Panel

File Edit Yew Project Operate Tools Window Help ol

m i@ III 13pt Dialog Font |'I n EO

4] v 4

(Front Panel of the finished Chapter 4 VI after a series of executions)

command (um)

Delay (ms)
6 Move
handle —
init ke

(Block Diagram of the Finished Chapter 4 V1)

Goal of Chapter 4

During this chapter, you will be instructed through the process of creating three distinct Vs,
each of which will handle a separate portion of the same program. A few new LabVIEW
concepts will be introduced along with several new LabVIEW components. The finished VI will
accomplish a similar task as the VI created in Chapter 3; however, the emphasis here will be the
use of SubVIs as a programming component.

28



Topics Include:
1. The use of SubVIs to simplify Block Diagram programming.
2. Editing the Connector Pane of the VI.

3. Responding to data using Case Structures and Comparison Functions.

EO-Drive.dll Functions Used Within This Chapter Include:
1. void EO_ReleaseHandle(int handle);
2. int EO_InitHandle();
3. int EO_Move(int handle, double command);

SubVIs Used Within This Chapter Include:
1. StandardlInit.vi (new)

2. StandardRelease.vi (new)

Section 4.1 — Creating the Init SubViI

The two images below depict two different states of the same Block Diagram. This is the Block
Diagram you will create in this section of the tutorial. It isn’t necessary to see an image of the
finished Front Panel; the Front Panel simply contains the “Incoming Handle” Numeric Control
and “Outgoing Handle” Numeric Indicator.

Incoming Handle is equal to zero: Incoming Handle is not equal to zero:

IncomingHandle ZubgoingHandle IncomingHandle CukgoingHandle

AFE £ [FED

i)
T

Creating a SubVI to initialize the handle

The “Incoming Handle” Control will receive an input from outside the V1. Similarly, the
“Outgoing Handle” Indicator will pass data outside of the VI for use in other VIs. With this
concept in mind, try interpreting what will happen when the V1 is run. The function of this VI
will be explained in depth as you progress through this section.

29



Recommended Reading: SubVI

This VI will act as a SubVI; this means that you will design it to work as a component within
other VIs you create. The SubVI is an important concept; it

is therefore recommended that you read the LabVIEW =l ) Pundamentals

Hel ment on VIs. @ Lab'IE'W Erveironmment
¢Ip document on SubVls @ Building the Front Parnel

@ Building the Block Diagram

Accessing LabVIEW Help documents on SubVls @ Rurring and D ebuaging Vis

To access the LabVIEW Help document on Creating = ([ Creating Vls and Subivls
SubVIs: Left click the Help Menu item at the top of your = [ Concepts

LabVIEW window; select Search the LabVIEW help... Examples and /] Templates

from the window that appears; (the LabVIEW Help window SIS Cle L B

should open) select the Contents tab from the left-most menu; :E!"t""""
expand the Fundamentals folder, expand the Creating Vls and S
SubViIs folder, expand the Concepts folder. Select Creating SubVIs Using Palyrmarphic Units

from the list. The document will display in a window to the right.

The Case Structure (Block Diagram)

The Case Structure (seen at left) resembles a Flat Sequence Structure in both
appearance and operation. However, the frames of the Case Structure are
inseparably stacked one on top of another. Consequently, only one frame, or
“case”, is visible at a time on the Block Diagram.

The key to the Case Structure is that only one of its frames (referred to as cases)
will execute, the rest remain inactive for the duration of the containing VI/loop.
Which case (frame) runs depends entirely on the value passed to the Selector
Terminal & (which appears on the left side of the structure). The Case Structure
therefore allows the programmer to answer a question asked on the Block
Diagram.

4.1.1 Create the Numeric Control and Indicator.

e Begin LabVIEW and start a new VI by selecting Blank VI from the Getting Started
Window. The Front panel and Block Diagram of a new VI appear.

e On the Front Panel, create a Numeric Control.

Cubgoing Handle
e Change its data type representation to 132 (signed 32-bit integer). o

Incoming Handle
e Change its label to “Incoming Handle”. )ln
e Create a Numeric Indicator.

e Change its data type representation to 132.

e Change its label to “Outgoing Handle.”

30



4.1.2 Create the Terminals of the VI

Every time you create a new VI, LabVIEW automatically prepares it to be used as a SubVI.
Therefore, your VI has already been assigned a Block Diagram icon and a set of input/output
terminals. So far these input and output terminals do not connect to anything within your VI.

¢ Right Click the icon that appears in the top-right corner of your =101
Front Panel. This is the default icon for a new VI. ]
e Select Show Connector from the menu that appears (see image

below). The Icon should switch from the graphic of an oscilloscope to a group of boxes.
This is the Connector Pane of your VI.

miotd  Note
You cannot Show Connectors from the Block Diagram. You will not have access to the
options shown in the image below unless you are on the Front Panel.

Bl untitled 1 Front Panel * :?E:: - 10| x|
File Edit Wiew Project Operate Tools Window Help 'H

— = et
©|EI WI £ |— VI Properties

Edit Icon...

Incoming Handle Cukgoing Handle Shiow Connector
;‘n 0

Find All Instances

Add Terminal
Remowe Terminal
_*I | & Patterns 3
Rotate 90 Degrees
Flip Harizonbal
Flip Werkical
Disconnect &l Terminals

e Right click the Connector Pane Icon. 5

H Discanneck This Terminal

This Zomnection Is 3

e Hover the cursor over the Patterns item of the
menu that appears (seen below.)

e Select the fourth pattern from the left on the top row. In the image below, a red circle has
been added to indicate which pattern to choose.

31



! standardInit.vi Front Panel * o ] 554

Eile Edit Wew Project Operate Tools Window Help ] | H

o |{§}| ©E | 13pt Application Fonk |« || 5;.-“7”:7"% H vIproperties
Edit Icon...
Shiow Icon

Find all Instances

Add Terminal
Remove Terminal

Incoming Handle= “inkaninn Handl=

o > Patterns
D]]D f Rokate 90 Degrees
‘ — Flip Harizomkal
- 1 [ 1 Flip Wertical
_4| T Disconnect All Terminals
O o | e B 11 |H Disconneck This Terminal
[ [T] I 0T 1 T— 1 T This Conmeckion Is b
O 1IEFEHEHEERE
HUH [HEHE] B
OBl 0l HE [
The Connector Pane
Input—p | T=>0uest  The Connector Pane specifies the input and output terminals of the VI
T, you’re creating. If this concept sounds obscure, keep in mind that some
Input—p— Ouiput  \/|s are meant to be used within other VIs as SubVIs. Using the Connector
Pane is actually quite simple and intuitive, but requires an understanding
Inpmﬂ"’ompm of the underlying concept of the SubVI. If you haven’t already read the
National Instruments documentation on SubVIs, please refer to the
Input/Dutput beginning of this chapter for assistance locating these documents.

Example Input and Output on the Connector Pane

Below are images of two separate VIs; ParentVI.vi, and solve for Z.vi. Both VIs are configured
to accomplish the same task; to compute the length of the vector, Z. However, as can be seen,
ParentVI1.vi does none of the math. Instead, it passes the value of its Numeric Controls (X and Y)
to solve for Z.vi. Solve for Z.vi passes the data through the appropriate mathematical operators,
then stores the computed value inside its Numeric Indicator (Output). The Output Indicator is
connected to the output terminal of the solve for Z.vi Connector Pane, which allows its value to
pass out of solve for Z.vi. ParentV1.vi then retrieves the value of the Output control and passes
the value to its Numeric Indicator (Z.)

32



B! Parent¥1vi Block Diagram *

File Edit Wiew Project Operate  Tools  window  Hel File Edit Wiew Project Cperate  Tools|[]

[[e] O [n][][2] [wal |5 4 e @[n|

k

Pz,

P,

File Edit ‘iew Project Cperate  Tools  Window  Help

[2]=] © (][] [ec] [bal P

4.1.3 Set the input and output of the VI

o Left click the input (left) half of your VI’s Connector Pane.
The side you click should turn black (as seen to the right.)

e Left click the Incoming Handle Control. The left half of your
Connector Pane should turn blue (if it changes from black to a
color other than blue, verify the Incoming Handle control is set
to 132.)

o Left Click the output (right) half of your VI’s Connector Pane.

e Left Click the Outgoing Handle Control. The right half of your Connector Pane should
turn blue.

33



4.1.4 Editthe icon

This SubVI will appear within the Block Diagram of future VI’s as an icon with input/output
terminals. The icon of a SubVI should summarize its purpose; the purpose of this SubV1 is to

initialize a handle for use within other VI’s.
¢ Right click the Connector Pane icon.
e Select Show Icon from the menu that appears. The
Connector Pane graphic should be replaced with the more

familiar graphic of an instrument displaying a sine wave.

e Once again, right click the icon.

.

VI Properties
Edit Icon...

Show Connector

e Select Edit Icon from the menu that Bl Icit.,r =
H File | Edit Help
appears.r;l'he Iﬁo? Editor opens (as o — o
seen to the right. Reda Chrh+Shift+2 L7y LReLLE
° i o m]| _seckawhie |
H - - - QD_ Chrl+C 1 16 Calors
e Clear the image to white. This can be i oy & o ﬁ
done either by painting white over the L Qp SR
entire image, or by selecting Clear Select 4l
from the Edlt menu. Import Picture ko Clipboard. .. o Calars

e Select the text tool from the —ll

toolbar on the left side of the Icon LeonlnIoss 207000

ni.com I

(0]4 |
Cancel I
Help I

Editor.

e Left click slightly left of the center in your icon. You can now apply text to this area.

e Enter:INIT

e Draw a black border around the perimeter of the canvas using the pencil, line or unfilled
square tool. Do not draw the border tightly around the text; it should encompass the entire

drawing area.

e Check the Show Terminals option on the right side of the Icon
Editor. Your image should appear very similar to the one seen
at right.

e Click the OK button at the bottom-right of the Icon Editor.

IMIT

34




1'11'11']}1'& Note

4.1.5

To view the inputs/outputs of a SubV1 in a format similar to the image below, select
Help>>Show Context Help, then left click the icon of the SubVI.

StandardInitbuiltup.vi

Incarning Handle L ukgaing Handle

Configure a Call Library Function Node to Call EO_InitHandle

The Front Panel is finished. Switch to the Block Diagram (hold Ctrl and press E.)

4.1.6

From the Block Diagram, create a Call Library Function Node. Place the Call Library
Function Node anywhere on the Block Diagram.

Enter its Configure menu.

Direct the Library name or path to the EO-Drive.dll using the browse button.

Under Function name, select EO_InitHandle.

Left click the Parameters tab at the top of the Configure menu.

In the Current parameter area, replace the name “return type” with the name “handle”.

Change Type from “void” to “Numeric”. Two new settings should appear; Constant, and
Data Type.

Change Data Type to “Signed 32-bit Integer”.

Left click OK to accept the changes.

Create the Case Structure

You will now be instructed to create a Case Structure. The Case Structure creation process will
closely resemble creation of the Flat Sequence Structure.

Right click over any empty area of the Block Diagram. The Functions menu appears.

Hover your cursor over the Exec Control icon which appears within the Express submenu
of the Functions menu.

Left click the Case Structure icon. [ The two menus vanish.

35



e Left click any empty area of the Block —AFFunctions Q, search
3

Diagram. S

4 m’ [

_ 8 s &

e Move your cursor approximately three Iput  Signal Analysis  Output

inches (75mm) diagonally. Be careful to o~ ’ &5

. ( ) g y EPE @ »=HIExecution Control
aV0|d 0V9r|app|ng any Other BIOCk Sig Manip Exec Control Case Structure

Diagram components. Favorites

User Libraries

Select aVl... ‘Whils Loop Flak Sequence  Case Struckure

5

Time Delay Elapsed Time

e Left click again to finish creating a Case
Structure (alternatively, you could have

=1

left clicked and held the button to specify
the initial size of the Case Structure.)

e Any Block Diagram components that were overlapped by the Case Structure at the
moment of its creation have been automatically inserted into the Case Structure. If this
has happened, drag them out of the Case Structure. The Case Structure should be empty
at this point.

4.1.7 Create the Equal Comparison Function

You will now create the Comparison function which is used to check for a valid handle.

The Equal? Comparison Function

The Equal? comparison function receives two separate data inputs, compares them, then outputs
a value of True if the inputs are equal, or False if the inputs are unequal. Like every other
LabVIEW function, the inputs are wired into the left side of the Equal? function, and the output
is taken from the right side of the Equal? function.

e Right click an empty area of the Block Diagram. The Functions window appears.

=z
e Hover the cursor over the Arith & Compar icon ﬂ The Arithmetic & Comparison
window appears (seen below.)

e Hover your cursor over the Comparison
icon. The Express Comparison window

appears.
e Left click the Equal? B> | function. All e —
Windows vanish and you are left s Gt Lol R
holding an Equal? function =
' ' = & > E> = E>
Mot Equal? Greater? Less? Greater Or =7 Less Or =7
° Left CIiCk an empty area to the Ieft Of the Equ?‘; or M tEan 0? Great?\an o7 Lass%n o7 Graatli);:m Lass%: oz
Case Structure to place the Equal? .
function. el E—

36



4.1.8

Create the Numeric Constant.

You may recall creating a Numeric Constant in the first chapter. However, the previous
instructions followed a shortcut method for creating the Numeric Constant. The following
instructions will find the Numeric Constant within the Functions menu.

4.1.9

Right click any empty area of your Block Diagram. The Functions menu opens.

Hover your cursor over the Arith & Compar icon. The Arithmetic & Comparison window
appears.

. L . .
Hover your cursor over the Numeric icon. The Express Numeric window opens.

Left click the Num Const icon. The windows vanish and you will be left holding a
Numeric Constant.

Left click an empty area of the Block Diagram that is to the left of the Equal? function.
This places the Numeric Constant (with an initial value of “0”.)

Arrange the Components to prepare for wiring

Arrange the components so your Block Diagram appears similar to the image below.

Leave the EO_InitHandle Call Library Function Node outside of the case structure for
now.

InitHandle
a B«
(R n : Pl
IncomingHandle : 2 CkgaingHandle
23]

37



4.1.10 Make the Comparison Wire Connections

It’s now time to connect the inputs and output of the Equal? comparison function.

Using a Comparison function to control a Case Structure

If this VI was used as a SubV|I, the following could occur: a valid Handle is passed into the
Incoming Handle Control from another V1. In this case, the Handle should be passed directly to
the Outgoing Handle indicator and right back out of this VVI. However, if no Handle is passed
into this VI, an attempt will be made by this VI to get a Handle for the EO-Drive. How will this
VI know when it has to acquire the Handle itself? Answer: if the Incoming Handle control is
empty (i.e. the Incoming Handle control is equal to “0”.)

e Left Click the output (right) side of the Incoming Handle control. You are now dragging
a wire out of this control.

e Left click the top input of the Equal? comparison function. A wire has been created
connecting the Incoming Handle control to this input.

uiets  Note
The Il in the image at right appears whenever the top ~ [X=2%;
input of a comparison function is highlighted. It’s e g';:;.
telling us that the top input is the X in the comparison ]
equation: is X =Y?

Left click the output of the Numeric Constant. You are
now dragging a wire out of the Numeric Constant.

Left click the bottom input of the Equal? comparison function to finish
creating a wire between the Numeric Constant and the Y input of the
comparison function.

Left click the output (right) side of the Equal? comparison function. You
are now dragging a wire out of this comparison function.

Left click the Selector Terminal [l of the Case Structure. LabVIEW automatically
connects the wire to the input (left) side of Selector Terminal.

Incoming Handle

Cukgoing Handle

38



4.1.11 Make the Outgoing Handle wire connections

Upon creation, your Case Structure was automatically given two cases: True and False. Keep in
mind that the title of these cases corresponds with the possible outputs of the Equal? function.

Understanding the Case Structure

Two separate Case Structures exist among the five images of cases below. The cases titled True,
and False, represent one entire Case Structure; the cases titled 1, 2, and 3, are the second entire
Case Structure.

Cycling through cases (frames) of a Case Structure

On the Block Diagram only one case of a Case Structure is visible at a time. To view other cases
belonging to the same Case Structure; left click the downward pointing arrow at right of the case
title. This action pulls down a list of existing cases. Left click the title of a case to view it.

e Switch to the False case of your Case Structure.

e Note

&
If you find that your Case Structure is missing the True and/or False case, or other cases
exist than the True and False cases; refer to the LabVIEW help file on Case Structures
for help editing/deleting cases.

e Left Click the input (left) side of your Outgoing Handle indicator. You are now dragging
a wire out of this indicator.

e Drag the wire into the Case Structure. You’ll see the _ g E"“ Handle
prototype of a Tunnel -#-- appear where the wire entersthe g _td

Case Structure.

e Left click an empty area within the Case Structure.
You’re still dragging the wire, but you’ll notice it has s % Dutgoing Handle

been pinned down at the point where you clicked. A red
circle has been added to the image at right to illustrate
where the wire was pinned.

e Drag the wire out the left edge of the Case Structure. Another Tunnel prototype appears
where the wire exits the Case Structure.

39



Left click the output of the Incoming Handle control. A wire has been created connecting
the Incoming Handle control to the Outgoing Handle indicator through the False case of
the Case Structure.

Cubgoing Handle

Case Structure Outputs

All Structure inputs/outputs pass through Tunnels -&-, which often take on a distinct color
according to the type of data passing through. However, the Tunnel passing the Incoming Handle
wire through the output (right) side of the Case Structure is filled with white representing that it
is incomplete: -O-. This occurred because an output was also created in the True case of the Case
Structure. At this point, the output in the True case isn’t configured, and so, it can’t be used.

4.1.12 Prepare the True case of the Case Structure

You will now create the code that will execute in the event that the value, “true”, is passed to the
Case Structure Selector Terminal.

Switch to the True case of your Case Structure. The wire passing through the Case
Structure appears to have vanished. In reality, it still exists but is hidden within the False
case.

Drag the EO_InitHandle Call Library Function Node into the middle of the True case of
your Case Structure.

Left click any empty area of the Block Diagram to deselect the Call Library Function
Node. This is a necessary step before you can create a wire at a terminal of this Call
Library Function Node.

Left click the “handle” output of the EO_InitHandle function. You are now dragging a
wire out of the Call library Function Node.

IncomingHandle

zfte— W (.22
TR n al

40



e Left Click the output (right side) Tunnel of the Case Structure. The wire is created and
the Tunnel fills in with blue.

4.1.13 Troubleshooting

The V1 is finished; however, you shouldn’t run it yet. Take a look at the Run arrow; if it is
broken |5*|, there are errors in the VI; continue with this section for assistance troubleshooting
the V1. If your Run arrow is not broken , Skip the troubleshooting section.

e If your Run arrow appears unbroken , skip this section.

e Compare your Block Diagram to the images shown at the beginning of this chapter of the
finished Block Diagram. Correct any differences you find between the two.

wntts Note
Keep in mind that two cases exist within your Case Structure. Verify that both of the
cases are configured correctly. If more than two cases exist, delete all except for the
True, and False Cases. To delete a case of the Case Structure: right click the border of
the Case Structure, select Delete this case from the menu that appears.

e Left Click the broken Run arrow The Errors List window appears.

e Read through the list of errors. Read the Details for each error (there are often helpful
recommendations here.)

Hwutg  Note
The LabVIEW Error List shows all outcomes of a mistake, not necessarily the mistake
itself. Though several errors may be listed, they may all originate from one missing
wire connection or unconnected input.

e Double left click any item of the Error List and LabVIEW will find it on the Block
Diagram for you.

e |If problems persist, restart this chapter with a new VI. In some cases, this may be the best
way to discover the error you’ve overlooked.

Notes on section 4.1.14
The next VI you create will use this SubVI to obtain a handle for the EO-Drive.

e The Init SubVI is complete. Save this VI in a new folder with the filename: Standardinit.

41



Handle With Care

This SubVI is not meant to be run alone. There is no provision in this VI for releasing the Handle
it has obtained. Because of this, the VI will continue to hold the Handle even after the VI has
stopped running! This would disable other applications which try to communicate with the EO-
Drive. If this happens, you must exit and restart LabVIEW to force the release of all handles held
by LabVIEW Vis.

The StandardlInit SubVI

Shown below is an image of the finished Block Diagram following completion of Chapter 3.
Circled in red is the portion you’ve created so far. It should now be clear to you how this portion
of the VI works: If the Handle passed into the Init SubV1 is equal to zero, the Init SubVI acquires
the Handle itself. If the incoming Handle is not zero, it is passed to the output. In either case, a
Handle is passed out for use within the parent V1.

TOooOoooo000000000000000000000n
command {um
() Move Delay (ms)
Sz @ (EZT,
a O o 12
I3
I3z J I3k
handle
nit -
OOoooo0oOooOooOooooooooooooooooon

Section 4.2 — Creating the Release SubVI

The process of creating the Release SubV1 will closely resemble the previous process by which
you created the Init SubV1.

The Release SubVI

Below can be seen the Block Diagram of the Release SubVI which you will be
Fieleace creating in this section of the tutorial. Because a Case Structure is used within this
VI, it is again necessary to show two separate states of the same Block Diagram.
It is not necessary to see the Front Panel of this VI; the Front Panel simply
contains the Incoming Handle and Outgoing Handle Numeric Controls.

42



The Incoming Handle is equal to the The Incoming Handle is not equal to the
Outgoing Handle: Outgoing Handle:

IncomingHandle

0 ReleaseHandle
QukgoingHandle B
3 ‘.123 : & T3 I T3

I3

IncomingHandle e

B FE]
iR

ZutgoingHandle

B FE]
FE]

(Block Diagram of the finished Release SubVI)

Inputs of the Release SubVI

reomnarange] | € Release SubVI has two inputs and no outputs. The inputs are the Incoming

5 Handle and Outgoing Handle Numeric Controls (seen at left.) The names of the
inputs refer to the input and output of the Init SubVI (you created previously) on the
MEFL CommandEO VI Block Diagram.

StandardRelease.vi

Incoming Handle Ficliase
Outgoing Handle

Stand-Alone VI versus SubVI

The StandardInit, and StandardRelease, SubVIs can’t do much on their own. They are meant to
be used within other VIs which issue commands to the EO-Drive. A VI meant to stand alone (as
its own application) must contain within its Block Diagram all the necessary elements to gather
all required resources and must use the resources in some meaningful way, handle potential
errors, and release the gathered resources back to a non-volatile state. This can, of course, be
done with the assistance of SubVIs; the important point is that a VI contains a complete program,
whereas a SubVI often only contains a supplementary set of instructions. However, it is
sometimes helpful to design a VI to be capable of standing alone while also being ready for use
as a SubVlI.

Stand-alone and SubVI Capability

The CommandEO VI that you are creating in this chapter will eventually be used within another
VI in a later chapter as a SubVI. However, by the end of this chapter the CommandEQ VI will be
ready to function as its own useful application.

The CommandEO VI as a SubVI

The purpose of the Release SubV1 can only be understood with the previous fact in mind. Take a
close look at the previous images of the finished Release SubVI, and at the image of the finished
CommandEO Block Diagram. The Handle is only released when the Incoming Handle control is
different from the Outgoing Handle control. Recall from creating the Init SubVI; this cannot be
the case when the Incoming Handle is different than “0”. This means the following: a Handle is

43



passed to the Init SubVI only when the CommandEOQ VI is being used as a SubVI; therefore, the
Handle should not be released (by the Release SubV1) at the termination of the CommandEO
SubVI.

handle
command (um)
Delay (ms)

COMm
EO

The CommandEO VI as a Stand-Alone Application
It is now apparent that the CommandEO VI does not initialize or release a Handle when used as
a SubVI. However, when the CommandEO VI is used as a stand-alone VI, it will both initialize,
and release, a handle. The Init SubVI knows to initialize a Handle because its “Incoming
Handle” control is equal to zero. The Release SubVI knows to release the Handle because its
“Incoming Handle” control is not equal to its “Outgoing Handle” control.

42.1

{ 32 ] I32
handle |:|:|

[ E—

init

fekae

O000 0000000000000 00000000000 ‘

Create the Two Numeric Controls

Begin LabVIEW and start a new V1.
Save this VI in the same folder that
contains Standardlnit.vi, under the new
filename: StandardRelease.

On the Front Panel, create a Numeric
Control.

Change its data type representation to 132
(signed 32-bit integer.)

Change its label to “Incoming Handle.”

Create another Numeric Control.

Change its data type representation to 132.

Change its label to “Outgoing Handle.”

" =18 x|
File Edit Yiew Project Operate Tools g‘"_mhm
o |@| @@ [ 13pt Application Fy

;I

Incoming Hamdle | ©ukgoing Handle

Ho o

-
4] | vl 4

44



4.2.2

HHHS

4.2.3

Create the Terminals of the VI

Right Click the icon that appears in the top-right corner of your Front Panel.

Select Show Connector from the menu that appears. The Icon should =101
have switched from the graphic of an oscilloscope to the Connector
Pane of your VI. =
- =
Note

You cannot Show Connectors from the Block Diagram. You will not have access to the
options shown in the image below unless you are on the Front Panel.

u B! standardRelease.vi Fror o ] |

Right click the Connector Pane Icon

File Edit ‘Wiew Project erate Tools _'|:‘—|—|:|
_ & |{§}| @)@ 13pt Application F{H Ivr EY—
Hover the cursor over the Patterns item of the Edit Tcan...
menu that appears (seen at right.) PRI — - ?odw;lc:nt
::'ID IJ— 0 il nstances
Select the fifth pattern from the right edge, on ::fn::;rj;:'mnal
the first row. In the image to the right, a red L Patterns
circle has been added to indicate which pattern D@ E Q% ;pth £ DHG
to choose. T
H:|:| Q] % H]:I @ ;ischnntect All Terminals
E:I E % E g] ED Djsconnect This Terminal
EE g} % EE % EE This Conmeckion Is 2
Set the input and output of the VI
Left click the top input of your VI’s Connector Pane. The top-left quarter N [w]

of the Connector Pane should turn black (as seen on the right.)

Left click the Incoming Handle control. The top-left quarter of your
Connector Pane should turn blue (if it changes from black to a color other
than blue, verify the Incoming Handle control is set as an 132.)

Left Click the bottom input of your VI’s Connector Pane.

Left Click the Outgoing Handle Control. The bottom-left quarter of your Connector Pane
should turn blue.

45



4.2.4

4.2.5

Edit the icon

Right click the Connector Pane icon.

-10O] =|
Select Show Icon from the menu that appears. The __ma
Connector Pane graphic should have been replaced with = WIProperties
the more familiar graphic of an instrument displaying a I Edic Icon-..

Show Conneckor

sine wave.
Once again, right click the icon.
Select Edit Icon from the menu that appears. The Icon Editor opens.

Clear the image to white. This can be done either by painting white over the entire image,
or by selecting Clear from the Edit menu.

Select the text tool from the toolbar on the left side of the Icon Editor.
Left click close to the left border of the icon. You can now apply text to this area.

Enter this word: Release

Draw a black border around the perimeter of the icon using x
either the pencil, line, or unfilled square, tool. Fl:

Check the Show Terminals option on the right side of the Icon x
Editor. Your image should now appear very similar to the one
shown at right.

Click the OK button at the bottom-right of the Icon Editor.

Configure a Call Library Function Node to Call EO_ReleaseHandle

The Front Panel is finished. Switch to the Block Diagram (hold Ctrl and press E.)

From the Block Diagram, create a Call Library Function Node. Placement of the Call
Library Function Node is not important at this point.

Enter its Configure menu.
Direct the Library name or path to the EO-Drive.dll using the browse button.

Under Function name, select EO_ReleaseHandle.

46



4.2.6

4.2.7

Left click the Parameters tab at the top of the Configure menu.

Left click the Add a Parameter | 3] button once.

Left click the newly added parameter, “argl”.

In the Current parameter area; replace the name, “argl”, with the name: “handle”.

All other settings should be correct at their default values. Verify that the Type is
“Numeric”, and the Data Type is “Signed 32-bit Integer”.

Your Function Prototype should now read:

void EO_ReleaseHandle(int32_t handle);

Left click OK to accept the changes.

Create the Case Structure and the Equal? Comparison Function

Create a Case Structure in an empty area of the Block Diagram

Create an Equal? function. |[=>

Place the Equal? function in an empty area to the left of the Case Structure.

Arrange the Components in Preparation for Wiring

Verify that your Block Diagram contains all components appearing in the image below.

HH1td Note

Don’t forget that the Call Library Function Node has two distinct icon formats; Names,
and No Names. The Call Library Function Node below is shown with the Names format
selected.

Drag each component of the Block Diagram to the approximate position relative to the
Case Structure as seen below.

47



IncomingHandle

B [FE I>

FeleaseHandle

n QREC_ReleassHande |,
handle

e Drag the EO_ReleaseHandle Call Library Function Node into the False case of your Case
Structure.

4.2.8 Make the Wire Connections

You will now be instructed to make the required wire connections. However, you will no longer
be given step-by-step instructions for doing so.

e Connect the output of the Incoming Handle control to the top input of the Equal?
comparison function.

e Connect the output of the Outgoing Handle control to the bottom input of the Equal?
comparison function.

e Connect the output of the Equal? comparison function to the Selector Terminal of the
Case Structure.

e Connect the “handle” input of the EO_ReleaseHandle Call Library Function Node to the
output of the Outgoing Handle control.

e Verify that your Block Diagram matches the image below before continuing. The True
case of your Case Structure should be empty.

IncomingHandle

; :ﬁ.'é'a"
— = ©  ReleaseHandle
CukgoingHandle I
ﬁE?: bl . I3l I 132
13: 55Er..r..r..r..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..,..r..r..r..r..r..r.

48



Section 4.3 — Create the CommandEO SubVI

Project Goal

In the following Section, you will create the CommandEO VI which incorporates the SubVIs
you’ve created. As suggested by the title of this section, eventually you will be using the
CommandEO VI as a SubVI.

0 I o o o o o R e s R R A s B s A s M B R
cormmand (urm
(o Move Cielay (ms)
2z T (T
n db n b
I3z
I3 | I3z
handle
nit e
OoOooOooOoOooooOoOoooOoooooooooooon ’7
handle oom
command (um) EO
Delay (ms)

VI Hierarchy
The image below shows the hierarchy of the VIs created in this chapter. The following is an
excerpt from the LabVIEW help document (index VI Hierarchy window):

“Use this window to view the subVIs and other nodes that make up the VIs in memory and to

search the VI hierarchy. This window displays all open LabVIEW projects and targets, as well as

the calling hierarchy for all VIs in memory, including type definitions and global variables.”

The VI Hierarchy window can be accessed at any time from the View menu.

Wienw
Controls Palette
Functions Palette
Toals Palette
- X
Quick Drop Ctrl+Space m =101 x]
file  Edit Wiew Tools ‘Window Help
Breakpoint Manager - —
=2 alr - T
Probe Watch 'Window M@ M |J®|E+:I i -ﬁ'i
Errar List Chrl+L 1=l
Load and Save Watning Lisk
I Hierarchy
LabVIEM Class Hierarchy
Browse Relationships L
cam L
This Y1 in Praject Chr|+SHfEHE o J init J
_ 2] 2] | 1=
Class Browser Cktl+Shift+B
Ackive Properky Browser &
; ; Ll J adl s
Getting Started Window. .. .
Mavigation Window Chrl+Shift+r Q
Toolbars 2 -
1 v [

49


lvhowto.chm::/Using_the_VI_Hierarchy_Win.html
lvhowto.chm::/Searching_in_the_VI_Hierar.html
lvconcepts.chm::/Using_LabVIEW_Projects.html

4.3.1

4.3.2

Start a New VI, Add the Front Panel Components

Start a New VI, save it as: CommandEO.

From the Front Panel, create three Numeric Controls.

Name the Controls: command (um), Delay (ms), handle.

Change the Representation of the “command (um)” control to DBL.

Change the Representation of the “Delay (ms)” control to U32.

Change the Representation of the “handle” control to 132.

| CoommandED.vi Front Panel O] =]

File Edit “ew Projeck Operate Tools Window Help i

m @ !|I 13pt Dialog Font |'I m |l EO

4] vl .4

Create and Configure the Flat Sequence Structure, and Timer

From the Block Diagram, create a Flat Sequence Structure.
Add a frame to the Flat Sequence Structure for a total of two frames.
Create a Wait (ms) Timer in the second frame of the Flat Sequence Structure.

Drag the “Delay (ms)” control inside the second frame of the Flat Sequence Structure,
and place it to the left of the Wait (ms) Timer.

50



4.3.4

Drag the “command (um)” control inside the first frame of the Flat Sequence Structure,
and near the left edge.

Resize the frames of the Structure, and position the other Block Diagram components to
match the image below.

1 0000000000000 000000000000000

camrmand (ur) Delay {ms)

iz

handle

Ooooo0o0oo0o0o0o0ooo0oooooooooooonan

Create the Function Call for EO_Move

Create a Call Library Function Node in the first frame of your Flat Sequence Structure.
Enter the Configure menu of the Call Library Function Node.

Under the Function tab, change the Library name or path to the address of the EO-
Drive.dll

From the Function name pull-down menu, select EO_Move.
Switch to the Parameters tab.

Left click the “return” parameter; under Current parameter, change the Name to “Error
Code”, the Type to “Numeric”, and the Data type to “Signed 32-bit Integer”.

Add two new parameters

Left click the first of the new parameters, argl, and configure the Current parameter area
to the following: change the Name to “handle”, Type to “Numeric”, Data type to “Signed
32-bit Integer”, and Pass to “Value”.

Left click the second parameter, arg2, and configure the Current parameter area to the

following: Change the Name to “command”, Type to “Numeric”, Data type to “8-byte
Double”, and Pass to “Value”.

51



Verify that your Function Prototype appears as follows:

int32_t EO_Move(int32_t handle, double command);

e Leftclick OK to accept the changes and exit the Call Library Function Node
configuration menu.

4.3.5 Add the Init and Release SubVIs

You will now add the Init, and Release, SubVIs. As you will see, the SubVIs can be added to the
VI like any other component you’ve added so far.

e Right click an empty area of the Block Diagram. The Functions palette appears.

o Leftclick the Select a VI menu item. A new window  .—Functions Q Search
appears with the title: Select a VI to Open g ¢
il = »
; Y -
e Use the Select a VI to Open window to locate your E = o%
StandardInit.vi. ¥ » =5
e = S
e Left click your StandardInit.vi; it should appear in the Fav::igte"la”‘p ExecCotrol Arth & Compar |
File name: field near the bottom of the window. N ,

e Left click the OK which appears at the bottom-right v |

of the window. The window vanishes, and you are left
holding the icon of your StandardInit.vi

e Leftclick an empty area at the left of the Flat Sequence Structure to place the
StandardInit.vi

¢ Follow the same process to locate and place the StandardRelease.vi to the right of the Flat
Sequence Structure.

TOooooooo0o000000000000000000oon
command (um
() Move Delay (ms)
izap o
ol w 2
I3l
I3 I3k
handle
nit -
Do0oo0ooO0oO0o0o0o0o0o0o0 o000 ooooog

52



4.3.6 Make the Wire Connections

Connect the output of the “command (um)” control to the “command” input of the
EO_Move Call Library Function Node.

Connect the “Handle” control to both the StandardInit SubV1 input, and the
StandardRelease SubVI top input (Incoming Handle). The wire connecting to the Release
SubV1 should not pass through the Flat Sequence Structure (as seen in the image below.)

handle
==

Connect the output of the StandardInit SubV1 to the Handle input of the Call Library
Function Node, as well as the bottom input of the Release SubV1 (Outgoing Handle).

handle

init

e Rae

OO0 o000000000onn

Ooooooo0oooono

1 0000000000000 0 [

Oo0o0o0o00o0ooo0non

Finally, connect the output of the “Delay (ms)” control to the input of the Wait (ms)
Timer.

init

command {um)

Hzap

Delay (ms)

e Eae

OO000o00000000n0n

Ooo0oo0oonoooonoon

53



4.3.7

that appears. The Icon should have 7 .
switched from the graphic of an o e | i
oscilloscope to the Connector Pane of vt
your VI. e raias
nnnnnn d (urm)

w905 Note - [ ] [H
You don’t have the option to Show (- S 2Rl =S
Connectors from the Block Diagram. -
You will have to switch to the Front Ela(S BEIRIHE(S
Panel to have access to the options oI AEH JEHE
shown in the image at right. W e EE R A

4.3.8

Create the Terminals of the VI

From the Front Panel, right click the icon [="1] of the VI.

Select Show Connector from the menu

Right click the Connector Pane Icon J

Hover the cursor over the Patterns item of the menu that appears (seen above.)

Select the pattern which is second-down from the top, and second-inward from the left
edge. In the image above, a red circle has been added to indicate which pattern to choose.

Set the input and output of the VI

Left click the top input (left side) of your VI’s Connector Pane. The selected input of the
Connector Pane should turn black.

Left click the “handle” Control to connect it to the Connector Pane input. The Connector
Pane input should turn blue (if it changes from black to a color other than blue, verify the
handle Control is set as an Int32).

Left click the middle input of your VI’s Connector Pane. The selected input of the
Connector Pane should turn black.

Left click the “command (um)” control. The Connector Pane input should turn orange.
Left click the third, and final, input of your VI’s Connector Pane.

Left click the “Delay (ms)” control. The input should turn blue.

54



4.3.9 Editthe Icon

¢ Right click the Connector Pane icon.

e Select Show Icon from the menu that appears. The =
Connector Pane graphic will be replaced with the graphic
of an instrument displaying a sine wave.

Edit Icon. ..

VI Propetties I

Show Conneckor

e Once again, right click the icon.

e Select Edit Icon from the menu that appears. The Icon Editor opens (as seen below.)

¢ Edit the Icon graphic to appear similar to the image at right. COm

EO

Section 4.4 — Run the CommandEOQO VI

You now have a VI that will write a position command to the EO-Drive. Though this VI
functions similarly to the VI created during Chapter 3, this VI is much better suited to serve as a
SubV I within the VI you will create in Chapter 5.

=) CommandED.¥i Front Panel =|O

File Edit “jew Projeck Operate Tools Window  Help T

m i@ IlI 13pt Dialog Font |'I ] EO

4] v 4

(Front Panel of the finished Chapter 4 VI after a series of executions)

55



fTooooooooooooo0ooooooooooooon
cormmand (urm
(o Move Cielay (ms)
iz
ndh u 2
I3z
I3 JI3d
handle
nit -
o 0 o o o o o o o o e A s s

(Block Diagram of the Finished Chapter 4 V1)

4.4.1 Prepare to Run the VI

e Save the VI as;: CommandEO
e Turn on the EO-Drive.
e Switch to the Front Panel of your VI.

e Enter a position to move to into the “Move to (um)” control. Choose a micron value
within the range of motion of your stage.

e Set the “Delay (ms)” control to “10”

e Run the VI. The EO-Drive stage will move to the specified position.



Chapter 5: Create a Scanning VI

The VI shown below will be created in Chapter 5.

B SawScan.vi Front Panel *

Eile Edit Yiew Project Operate Tools ‘Window Help Saw
Mﬂ 13pt Dialog Font |'I ;mvl :[;.‘ —

| SawScan.vi Block Diagram *
File Edit Wiew Project Cperate Tools  window  Help Tam
N 3 S e e = e [
-I
Delay Between Steps (ms)@—
Skart {um) |[D51 )
End (Lll'ﬂ) [DEL} RARF
Mumber of Steps |(UE
handle — e ke
init
-
4 | o[

(Image of the finished Block Diagram by the end of Chapter 5)

Goal of Chapter 5

Chapter 5 demonstrates how to use the skills acquired throughout this tutorial to create a simple
scanning program. This Chapter consists of two sections; the first section programs a SubVI1 to
calculate an array of values, the second section programs a VI to command each value of the
array to the EO-Drive.

57



Topics Include:
1. Arrays
2. While Loops
3. For Loops
4. Shift register

EO-Drive.dll Functions Used Within This Chapter Include:
1. void EO_ReleaseHandle(int handle);
2. int EO_InitHandle();

3. int EO_Move(int handle, double command);

SubVIs Used Within This Chapter Include:
1. Standardlnit.vi
2. StandardRelease.vi

3. RampGenerator.vi (new)

Section 5.1 — Create the Ramp Generator SubViI

Project Goal

Unlike other Vs you’ve created so far, this VI will not directly communicate with the EO-Drive.
Instead, the sole purpose of this VI is to create an array of position values which can be
subsequently commanded to the EO-Drive DAC.

=101 %]
[Ele Edt view Project Operate Tools Window Help
m@l @IEI | 13pt Application Font | I|:mv'|ﬁ:v'|ﬁv'[ "
B
Generates a linear ramp from Skark to End {inclusive).
This example is used as a SubYI in the provided scanning examples.
Start {um) End {um} Nu\ml:uer of Positions Ay
;:ln.nnn )| 10.000 }Jlun 33 0.00
|
Kl | 0y,

(Image of the finished Front Panel of the ramp generating SubV1)

58



5.1.1

5.1.1

umber of Positions

[
0,00 .+ [EH
L8
-1
[} [>'
550 |5
[}

(Image of the finished Block Diagram of the ramp generating SubV1)

Create the Three Numeric Controls

Begin LabVIEW and start a new VI by selecting Blank VI from the Getting Started
Window. The Front panel and Block Diagram of a new VI appear.

Save the VI as: RampGenerator.vi

On the Front Panel, create a Numeric Control.

Change its data type representation to U16 (Unsigned 16-bit integer.)
Change its label to “Number of Positions”.

Create a second Numeric Control.

Change its data type representation to DBL.

Change its label to “End (um)”.

Create a third Numeric Control

Change its data type representation to DBL.

Change its label to “Start (um)”.

Create the Array Indicator

Right click an empty area of the Front Panel to access the Controls palette.

59



e Expand the Controls Palette.

wWision Pr:

e Open the Modern>>Array, Matrix
& Cluster sub-palette

e Select Array.

e Place the array on an empty area of

the Front Panel

Arrays in LabVIEW

' . —FiModern

Text Inds Graph Indicat. ..

o—{HControls Search
System
Classic
Express
EM M M
. A
2
Mum Chrls Buttons Texk Chrls
EaiE ]
e 4
User Ctrls Murn Inds LEDs
b M
E}
i
=]

Control Design & Simulation
MET 8 Activel

Addons

User Controls

Select 3 Contral,.,.

Vision

Boalean String & Path

i 1l
o={Flarray, Matrix & Cluster
Altay

Error In30.ck  Error Quk 30.ctl

Arrays are used to link multiple controls/indicators of the same

L nay representation together for simpler data manipulation. As an example;

o imagine a VI that calculates five points for “Y” along the line: Y=X+2, in
equal “X” increments from: X = 1, to X = 5. Typically, to display the “Y”
value of the five points would require five separate Numeric Indicators.
An Array could be used to contain all five of the indicators, and link them
to each other. Inside the Array, the indicators are identified not by name,
but by their position within the array (i.e. first, second, third, etc...).

Cycling Through the Values Contained Within an Array

Array

The many values stored within an Array can be individually accessed
according to their position in the Array by cycling the control at the left of
?JIS I oy the position value (in the image at right, the value of position 3 of the

array is being viewed.) Continuing our example from before, position “0”
of the Array would contain the value “3” (Y=1+2), position “1” would

contain the value “4” (Y=2+2), and so on.

e On the Front Panel, create a Numeric Indicator with data type: Double.

e Drag and drop the Numeric Indicator into the empty grey box of the Array Indicator.
Each position within the Array now contains its own instance of a Numeric Indicator with

data type: Double.

60




5.1.2

T.‘.'.[‘.'.E.'-E@ Note !

5.1.3

Create the Terminals of the VI

From the Front Panel, edit the Connector Pane of
your VI. —

Select the second pattern down, and to the right, from
the top-left corner. In the image above, a red circle
has been added to indicate which pattern to choose.

Tk

H 5[]

OH B HH ]

You cannot Show Connectors from the Block !
Diagram. You will not have access to the options
shown in the image at right unless you are on the
Front Panel.

Set the input and output of the VI

Left click the top input (left side) of your VI’s Connector Pane. The top-left sixth of the
Connector Pane should turn black.

Left click the “Start (um)” control. The top-left sixth of your Connector Pane should turn
orange (if it changes from black to a color other than orange, verify the “Start (um)”
control is set to DBL.)

Left click the second input of your VI’s Connector Pane.

Left click the “End (um)” control. The second input of your Connector Pane should turn
orange.

Left click the bottom input of your VI’s Connector Pane.

Left click the “Number of Positions” control. The bottom input of your Connector Pane
should turn blue.

Left click the right (output) half of your VI’s Connector Pane.

Left click the “Array” indicator.

Your VI’s Connector Pane should now resemble the image at right: E]

61



5.1.4 Edit the icon

e From the Front Panel, right click the Connector Pane icon.

o Select Show Icon from the menu that appears. | ]‘.‘;.ﬁIMF

e Edit the icon of this VI to appear similar to the image at right:

5.1.5 Initialize an Array

You will now be instructed to create an Initialize Array function. The Initialize Array Function
will create an array for your VI to fill with position values, incrementing from “Start (um)” to
“Finish (um)”.

Array of values

The finished SawScan VI will command the EO-Drive to each of many individual positions.
Instead of calculating the next position before each motion command, it is simpler to pre-
calculate all position values within a SubVI. We can then pass the array of values to another VI
that handles the EO-Drive movement. An Array is simply a conventional way to store large
quantities of values.

e The Front Panel is finished. Switch to the Block Diagram (hold Ctrl and press E.)
e Right Click an empty area of the Block Diagram to access the Functions Palette.
e Open the Programming>>Array category of the Functions Palette.

WS Note

In order to see the Programming sub-menu, you may have to left click the dashed down
arrow to expand the Functions Palette.

62



e Left click the Initialize Array icon.

—IHIFunctions Q Search
Measurement Ifi0 ' o—D:OProgramming
Instrument IjO ! Arra
Yision and Motion ' ,—|’| ORE %
O—Diﬂnrray ‘ﬂ"
iti Array Array Cluster, Class. ..
29 B |8 =
- @ wt @ i
Index Array  Replace Subset Insert Into Ar... Delete From ... File IfQ Boolean

Array Size

B 8- 3 o'
=) b I>
Max & Min Reshape Array Comparison Timing
i~ B
Reverse 1D A, Robate 10 Ar... ‘Waveform

— M M

I= e &
B -m - J

... Interleave 1D... Decimate 1D ... Transpose 2D... Bwnchronization Graphics & So...
Array Constant  Array To Clus... Cluster To Ar...  Array to Matrix  Matrix bo Array
. |

e Place the Initialize Array function over any empty area of the Block Diagram.

The Initialize Array Function

As mentioned before, the Initialize Array function creates an array for use within the Block
Diagram. Using the Initialize Array function we can specify an initial value for each element of
the array, as well as the total number of elements which will exist inside the array. The array is
taken from the output (right) of this function.

e Create a Numeric Constant with a value of “0”.
e Place the Numeric Constant slightly to the left of the Initialize Array function

e Change the Representation of the Numeric Constant to DBL.

neng  Note
The Adapt to entered data option will automatically uncheck after you specify a Data
Type Representation for the Constant. In this case, this option will not work for us.

e Create a wire connecting the Numeric Constant to the Initialize Array function’s top
input (labeled element.)

Initialize Arraw

0.GaL---- & Initialize Array
a8 0,00 EHr{
element [

e Drag the Number of Positions Control above, and to the left, of the Initialize Array
function.

63



e Create a wire connecting the Number of Positions Control to the Initialize Array
function’s bottom input (labeled dimension size.)

umnber of Positions urnber of Positions
@Z _______ [vi6+ .
: Inikialize: Array

v Initialize Array —>

i 0,00 o-+ [
0.00 -+ [ a8

g i

5.1.6 Create the For Loop

In the following set of steps, you will be instructed to create a Loop structure. The concept of
Loops in LabVIEW can be a difficult topic; use the LabVIEW Help documentation on For and
While loops if you feel this tutorial inadequately covers this topic.

e Right click over any empty area of the Block Diagram to access the Functions palette.
e Open the Programming>>Structures category from the Functions palette.
e Left click the For Loop icon (seen below).

The For Loop

E Similar to the Flat Sequence structure, the For Loop will contain components of
your Block Diagram within a single frame, or subdiagram. Because of this, data

FarLloop  must tunnel into, and out of, the For Loop.
The Loop Count Terminal
Every For Loop you create is automatically created with a Loop Count terminal in
| its top-left corner. The Loop Count terminal is used to specify a number of times
to consecutively run the For Loop subdiagram. Wiring a numeric input, “n”, to the
Loop Count terminal commands the For Loop to run “n” times.
e Left click an empty area of the Block Diagram to begin placing the For Loop.
e Drag your cursor diagonally a few inches and left click again to finish placing a For
Loop. Any components that were overlapped by the For Loop during the creation process

have been automatically added into For Loop. Remove the overlapped components by
dragging them outside of the For Loop.

5.1.7 Create the Replace Array Subset Function

e Right Click an empty area of the Block Diagram to open the Functions Palette.

e Open the Programming>=>Array category of the Functions Palette.

64



5.1.9

Left click the Replace Subset icon.

Place the Replace Array Subset function inside the For Loop.

Create the Mathematical Operators

Right Click an empty area of the Block Diagram to open the Functions Palette.
Open the Arith & Compar>>Numeric category from the Functions Palette.

Left click the Subtract icon b The windows vanish, and you are left holding a Subtract
function.

Left Click an empty area of the Block Diagram at left of the For Loop to place the
Subtract function.

Follow the same process to locate and place the Divide function outside and to the left of
the For Loop.

Create the Multiply and Add functions and place them within the For Loop.

The Loop Iteration Terminal
Every For Loop you create is automatically created with a Loop Iteration

[i] terminal. The Loop Iteration terminal simply outputs a numeric value equal to the

number of times the For Loop has repeated (outputs a value of “0” during the first
run). Recall the picture from the beginning of Chapter 5 of the finished Block
Diagram; the Loop Iteration terminal is seen being used within the ramp-
generating calculations.

Arrange the Components in Preparation for Wiring

Verify Your Block Diagram contains all components appearing in the image below.

65



e Drag each component of the Block Diagram to the approximate position relative to the
For Loop, as seen below.

191288 Note
Multiple components can be selected, and dragged, together at a one time. Left click and
hold to create a selection box around the components. Include/remove components into
the group by holding the Shift key while selecting.

flumnber of Positions

Iﬁl';i:;aJiZE N Replace Array
— = { Subset At

[} I>
[

k

5.1.10 Make the Wire Connections

e Connect the output of the “End (um)” control to the top input of the Subtract function.

e Connect the output of the “Start (um)” control to the bottom input of the Subtract
function.

e Connect the output of the Subtract the function to the top input of the Divide function.

e Connect the output of the “Number of Positions” control to the bottom input of the
Divide function.

e Connect the output of the Divide function to the top input of the Multiply function. This
wire will have to tunnel into the For Loop

e Connect the Loop Iteration output to the bottom input of the Multiply function.
e Connect the output of the Multiply function to the bottom input of the Add function.
e Connect the output of the “Start (um)” control to the top input of the Add function.

e Connect the output of the Add function to the Replace Array Subset function’s bottom
input, labeled new element/subarray.

66



e Connect the Loop Iteration Output to the Replace Array Subset function’s middle input,
labeled “index”.

e Connect the output of the “Number of Positions” control to the Loop Count input.

e Verify that your wire connections are correct by comparing your Block Diagram to the
image below:

umber of Positions

[k

0,00

[} |>

k

5.1.11 Add the Decrement Operator, and Both Data Type Converters

You must now add a Decrement Operator and Data Type Converter to the wire which connects
the Number of Positions Control’s output to the bottom input of the Division function. However,
the Decrement Operator and Data Type Converter you are about to add must not affect the Data
passed from the Number of Positions Control to the Initialize Array function.

e Right click the wire (circled in red in the image
below), which connects the “Number of Positions”
output to the bottom input of the Division function.
Where it runs vertically toward the Division function, g Dakte Wre rand
at a point where the wire (from this point) connects B> e

Mumeric Palette: [

on one end to only the Division function. ’ ;

Probe
Custam Probe 3

Replace &

£

=

Set Breakpaint

e Select Insert from the shortcut menu that appears. [AnmEn s

e Select Numeric Palette. The palette containing Numeric Operators opens.

e Left click the Decrement icon. The Decrement function has been automatically inserted
into the wire.

e Right Click the same wire at the horizontal section between the Decrement Operator and
the Division function.

67



e Select Insert from the shortcut menu.
e Select the Numeric Palette.

e From the Numeric Palette; select
Conversion. The Conversion Palette

jumber of Positions|

N
ud |

T E—
= Clean Up Wire

Create Wire Branch
Delete Wire Branch

Replace A|

opens Nmn-:F‘a\ettE »
All Palettes »
e Select To Double Precision Float. el e
The windows vanish, and a Data m ..
Type Converter has been Inserted Absol%\da\ue ot T e ., T c%
into the Wire I> TDUndm Tuunﬁd... TDUndm TUUnd... ’
Square Root D 50 Sealing
° Right CIiCk the Wire WhiCh paSSGS . ToExtended ... ToDouble Pr... ToSingle Pre...
5
data from the Loop Count OUtpUt to Number ToB... Boolean Arra... Boolean To(0... To Time Stamp [=]
the bottom input of the =
Multlpllcatlon functlon at a String To Byk... Byke Array T...  Convert Unit  Cast Unit Bases
horizontal section.
e Select Insert from the shortcut menu.
e Once again, select the Numeric
palette. :Tﬁber of P05|t|0nsl -
0,00 EE'JE.FB A
e From the Numeric palette; open S
the Conversion palette. ‘
il |>
e From the Conversion palette; ‘
select the To Double Precision : [ [>m
. YOEL) 5B
Float icon. LabVIEW has ; 7] E
automatically inserted the Data 7

Type Converter into the wire for you.

5.1.12 Add, and connect, the Shift Registers for the For Loop

Your Ramp SubVI is nearly complete. The current V1 is ready to generate the ramp values;
however, it fails to store the values anywhere useful. You will now insert a shift register to retain

the data through successive iterations of the For Loop.

e Right click the right edge of the For Loop. A red circle has been added to the image

below, right click at this point.

e Select Add Shift Register from the shortcut menu that appears. A Shift Register has been

created on the right, and left, edge of the For Loop.

68



Drag a Shift Register vertically to @
place it in line with the Replace =

Array Subset function. Notice the i

Shift Registers move together.

Create a wire to connect the output
of the Initialize Array function to TS
the input of the left shift register. @

S 1 en [

k

Create a wire to connect the output
of the left Shift Register to the
Replace Array Subset function’s

Replace A
Th oh
Yisible Items
Help
Examples

Description and Tip...
Set Breakpoink

Skrucktures Palette

Auka Grow

Conditional Terminal
Replace with Wwhile Loop
Remove For Loop

Add shift Register

top input, labeled “array”.

e Connect the output of the Replace Array Subset function to the input of the right Shift
Register.

e Connect the output of right Shift Register to the input of the Array indicator

UiE N
i - Replace &
|
[u]
i =
,
> p >
b i |
‘Ep

The Shift Register

The Shift Register consists of two separate pieces, together allowing the

programmer to pass data from an iteration of a looping structure to the next. Upon
E Em completion of the For Loop the right-most Shift Register will output its most

recent value. The value passed through Shift Registers can be of any type,

including Array or Cluster.

Initializing a Shift Register

Before a Shift Register can be used, it must be initialized. The Shift Register at

left has been initialized with an 132. The Value at the output of the left-most Shift
E;‘ Register upon the first iteration of the For Loop would be “0”. In our Ramp

SubVI, the Shift Register is initialized with an array of values; therefore, each

69



iteration of the For Loop must not only specify new values for the Shift Register,
but must also specify which element of the array will hold the value.

5.1.13 Test the Ramp VI
e Switch to the front Panel of your VI.
e Enter the number “10” into the “End (um)” control.
e Enter the number “101” into the “Number of Positions” control.
e Enter the number “5” into the “Start (um)” control.
e Run the VI.

¢ Notice the first element (0) of the Array now holds the value 5.

Viewing values stored in an Array

From the Front Panel, use the arrow controls beside the Array indicator to view the values of
other elements. The values should be incrementing toward the “End (um)” value, 10. The
amount of the increments should be:

( End - Start ) / ( Number of Positions - 1)

¥ exRampGenerator.¥i Front Panel *

File Edit Yiew Project Operate Tools Window Help

Mﬁ i@ ||I 13pt Application Font |vl :mvl Tu:vl ﬁvl e;;vl 2

RAMP

Ao B doon Bloo |

AP

This equates to increments of 0.05 for the test values you entered previously.

70



Section 5.2 — Create the Saw Scan VI

Project Goal
It is now time to create the Saw Scan VI which uses the array generated by the Ramp SubVI to
command an axis to each of several positions.

_ol x|
File Edit Miew Project Operate Tools ‘Window  Help T am
>[@] @[n] loam?| o7 [ 130t Dislog Font EE IR Sean
[
Delay Between Steps {ms]l
Start {urn) | [DBL ¥
End {um) |[ oL Fl RamAR @
Mumber aof Steps [[U16k : -
handle | rekase
init
Kl | o[

(Image of the finished Saw Scan Block Diagram)

5.2.1 Start a New VI, Add the Front Panel Components

e Start a New VI, save it as: SawScan.vi
e From the Front Panel, create five Numeric Controls.

e Name the controls: Start (um), End (um), Delay Between Steps (ms), Handle, Number of
Steps.

e Change the Representation of the “Start (um)” control to DBL.
e Change the Representation of the “End (um)” control to DBL.
e Change the Representation of the “Delay Between Steps (ms)” control to U32.

e Change the Representation of the “Handle” control to 132.

71



5.2.2

Change the Representation of the “Number of Steps” control to U16.

Edit the Display Format of the “Start (um)”, and “End (um)”, control to display as a
Floating Point with 4 digits of precision.

Create and Configure the While Loop

From the Block Diagram, Right click an empty area to access the Functions palette.
From the Functions palette, open the Express>>Execution Control category.

Select While Loop.

Place the While Loop on the Block Diagram. The While Loop is placed in the same
manner as the Flat Sequence/Case Structure.

While Loop
The While Loop and For Loop are very similar in functionality. The main

—I difference being; the For Loop repeats a specific number of times, but, the While
ok Loop continues to repeat its subdiagram until commanded to stop. Like the For

wehile Loop Loop, the While Loop possesses a Loop Iteration terminal; however, the Loop

Count terminal is replaced by the “Loop Condition” terminal.

If a Boolean Control, labeled “stop”, was automatically created with the While Loop;
delete it now. Delete the wire that was connecting it to the Loop Condition input.

Drag all other Block Diagram Components to the left side of the While loop.

Resize the While Loop. Make it large enough to fit all the components that will later be
dragged inside it (as seen in the image below, or at the beginning of this chapter.)

Add the Init, Release, and the Ramp SubVIs

Right click an empty area of the Block Diagram. The Functions palette appears.

Left click the Select a VI menu item. A new window appears with the title: Select a Vi to
Open

72



End {urm} ¥ RAME
Mumber of Steps m
handle e kage
init

5.2.9

Skart {um) ¥

Use the Select a VI to Open window to locate your Standardinit.vi.

Left click your StandardlInit.vi; it should appear in the File name field near the bottom of
the window.

Left click the OK which appears at the bottom-right of the window. The window
vanishes, and you are left holding the icon of your StandardInit.vi

Left click an empty area left of the While Loop to place the StandardlInit.vi

Follow the same process to locate and place the StandardRelease.vi to the right of the
While Loop.

Follow the same process to place the RampGenerator.vi SubVI outside, and to the left, of
the While Loop.

Finally, follow the same process to place the CommandEO.vi SubVI inside the while
loop, and to the right of the other contained operators.

Delay Bebween Steps (ms) -

Create the Array functions, and Arithmetic & Comparison Operators

Select the Index Array function from the Array palette (the Array Palette can be found in
the Programming category of the Functions palette.)

Place the Index Array function inside the While Loop, near the middle.
Select the Array Size function from the Array palette.
Place the Array Size function below, and to the left, of the Index Array function.

Select a Decrement function from the Numeric palette (found in the Arithmetic &
Comparison category of the Functions palette).

73



e Place the Decrement function slightly below and to the right of the Array Size function.

e Select the Greater or Equal? Function from the Programming>>Comparison category
of the Functions palette (also found in the Express>>Arithmetic &
Comparison>>Comparison category of the Functions palette).

e Place the Greater or Equal? function slightly to the right of the Subtract function.

Delay Between Steps (ms)

Skart {um) ¥

End {um) ¥ RAMP @
Murmber of Skeps m
handle I> IE . %=
init )

The Loop Condition Terminal

Every While Loop you create is automatically created with a Loop Condition
terminal. The only way to stop a While Loop is to pass a value of “True” to the

Loop Condition terminal. How can we tell when to stop our SawScan VI’s While

Loop? The answer is simple: the value of the Loop Iteration terminal will equal

the size of the Ramp SubV|I’s array only after each position command has been

withdrawn from the array; therefore, the while loop should stop.

5.2.10 Arrange the Components in Preparation for Wiring

Your VI should now contain all the components seen in the images below. If this is not the case,
browse the previous set of instructions for the step(s) you’ve overlooked or try creating the
component(s) according to the images.

e Arrange the components of your Block Diagram to closely match the positions of the
components as depicted in the image above.

st Note
To view the label of a function (such as the array functions below): right click the
function, and select visible items>>label.

e Verify that the Data Type Representations of all your Numeric Controls are correct
before continuing.

74



5.2.11 Connect the Wires

e Create a wire to connect the “Start (um)” control to the Ramp SubVI’s top input, labeled
“start (um)”.

e Create a wire to connect the “End (um)” control to the Ramp SubVI’s middle input,
labeled “end (um)”.

e Create a wire to connect the “Number of Steps” control to the Ramp SubV1I’s bottom
input, labeled “Number of steps”.

e Connect the output of the Ramp SubVI to the Index Array function’s top input, labeled
“array”. The wire will tunnel into the While Loop to make this connection.

e Connect the output of the Ramp SubVI to the input of the Array Size function. Either
tunnel into the While Loop to make the connection or start the wire at a point on the
existing Ramp SubVI output wire which is already inside the While Loop.

e Connect the output of the Loop Iteration counter to the Index Array function’s bottom
input, labeled “index”.

e Connect the output of the Loop Iteration counter to the top input of the Greater or Equal?
comparison operator.

e Connect the output of the Array Size function to the input of the Decrement function.

e Connect the output of the Decrement function to the bottom input of the Greater or
Equal? comparison operator.

e Connect the output of the Greater or Equal? comparison operator to the input of the Loop
Condition terminal.

e Connect the output of the “Handle” control to the input of the Init SubVI.

e Connect the output of the “Handle” control to the Release SubVI’s top input, labeled
“Incoming Handle”. Do not tunnel through the While Loop to make this connection.

e Connect the output of the Init SubV1 to the bottom input of the Release SubVI, labeled
“QOutgoing Handle”. This wire must tunnel through the While Loop; into the left edge and
out the right edge.

e Connect the output of the Init SubVI to the CommandEO SubV1I’s top input, labeled

“Handle”. Either tunnel into the While Loop to make this connection or start the wire at a
point on the existing Init SubV1 output wire which is already inside the While Loop.

75



Connect the output of the “Delay Between Steps (ms)” control to the “Delay (ms)” input
of the CommandEO SubVI.

Connect the output of the Index Array function to the CommandEO SubVI’s top input,
labeled “command (um)”.

Section 5.3 — Prepare the VI to Scan an Axis

Project Goal

The SawScan VI is complete. Compare your Block Diagram to the image below before
proceeding. The VI is almost ready to run, but, first, you will need to enter valid parameters for
the VI. After entering the parameters, you will set them as default values; as default values, they
will be loaded with the VI every time it’s opened in the future.

End {um) * RAMP
Mumber af Skeps
handle —

5.3.1

Skark (unn) ¥

Celay Between Steps (ms) |[[USE)

(Image of the finished Block Diagram for the Saw Scan V1)

Set Default Values for the Front Panel Components

Switch to the Front Panel of your SawScan.vi.

Enter a micron Value into the “End (um)” control which is within the range of motion of
your stage.

Right click the “End (um)” control to access its shortcut menu.
Select the Data Operations category from the “End (um)” control’s shortcut menu.
Select Make Current Value Default from the list of Data Operations items.

Enter the value “100” into the “Number of Steps” control and follow the same process as
above to make this value the default value for this control.

76



e Enter the value “10” into the “Delay Between Steps (ms)” control and make this value
the default for this control.

e All other controls can remain at their initial default value, “0”.

5.3.2 Run the VI

e Run the VI. The stage is commanded through a ramp according to the input parameters.

Project Completed
You have programmed a LabVIEW VI to command an EO-Drive through a scan. This VI makes

use of the fundamental LabVIEW programming concepts, which you will require as you
program and customize VIs of your own. We designed this tutorial to cover the biggest hurdles
to getting started; however, there is still plenty left to learn about LabVIEW programming. From
this point on, we suggest you refer to LabVIEW help documentation anytime you’re about to try
something new.

77



	Controlling EO-Drive controller via National Instruments LabView programming
	Chapter 1: Introduction
	Chapter 2: Introduction to the LabVIEW Programming Environment
	Chapter 3: Creating a LabVIEW VI to Control an EO-Drive Axis
	Section 3.1 - Preparing the Front Panel interface
	3.1.1 Start a new VI, and create the Numeric Control
	3.1.2 Editing Data Type
	3.1.3 Create the two Numeric Indicators

	Section 3.2 - Preparing the Block Diagram
	3.2.1 Accessing and Understanding the Block Diagram
	3.2.2 Create the Flat Sequence Structure
	3.2.3 Add Frames to the Flat Sequence Structure
	3.2.4 Add a Timer
	3.2.5 Creating a Call Library Function Node
	3.2.6 Acquiring a Handle
	3.2.7 Running the VI
	3.2.8 Writing to the EO-Drive DAC
	3.2.9 Release the EO-Drive handle
	3.2.10 Connect the wires, and create the second Timer

	Section 3.3 – Command the EO-Drive
	3.3.1 Enter Valid Command Parameters


	Chapter 4: Create a SubVI for Commanding the EO-Drive
	Section 4.1 – Creating the Init SubVI 
	4.1.1 Create the Numeric Control and Indicator.
	4.1.2 Create the Terminals of the VI
	4.1.3 Set the input and output of the VI
	4.1.4 Edit the icon
	4.1.5 Configure a Call Library Function Node to Call EO_InitHandle
	4.1.6 Create the Case Structure
	4.1.7 Create the Equal Comparison Function
	4.1.8 Create the Numeric Constant.
	4.1.9 Arrange the Components to prepare for wiring
	4.1.10  Make the Comparison Wire Connections
	4.1.11 Make the Outgoing Handle wire connections
	4.1.12  Prepare the True case of the Case Structure
	4.1.13 Troubleshooting

	Section 4.2 – Creating the Release SubVI
	4.2.1 Create the Two Numeric Controls
	4.2.2 Create the Terminals of the VI
	4.2.3 Set the input and output of the VI
	4.2.4 Edit the icon
	4.2.5 Configure a Call Library Function Node to Call EO_ReleaseHandle
	4.2.6 Create the Case Structure and the Equal? Comparison Function
	4.2.7 Arrange the Components in Preparation for Wiring
	4.2.8 Make the Wire Connections

	Section 4.3 – Create the CommandEO SubVI
	4.3.1 Start a New VI, Add the Front Panel Components
	4.3.2 Create and Configure the Flat Sequence Structure, and Timer
	4.3.4 Create the Function Call for EO_Move
	4.3.5 Add the Init and Release SubVIs
	4.3.6 Make the Wire Connections
	4.3.7 Create the Terminals of the VI
	4.3.8 Set the input and output of the VI
	4.3.9 Edit the Icon 

	Section 4.4 – Run the CommandEO VI
	4.4.1 Prepare to Run the VI


	Chapter 5: Create a Scanning VI
	Section 5.1 – Create the Ramp Generator SubVI
	5.1.1 Create the Three Numeric Controls
	5.1.1 Create the Array Indicator
	5.1.2 Create the Terminals of the VI
	5.1.3 Set the input and output of the VI
	5.1.4 Edit the icon
	5.1.5 Initialize an Array
	5.1.6 Create the For Loop
	5.1.7 Create the Replace Array Subset Function
	5.1.8 Create the Mathematical Operators
	5.1.9 Arrange the Components in Preparation for Wiring
	5.1.10 Make the Wire Connections
	5.1.11 Add the Decrement Operator, and Both Data Type Converters
	5.1.12 Add, and connect, the Shift Registers for the For Loop
	5.1.13 Test the Ramp VI

	Section 5.2 – Create the Saw Scan VI
	5.2.1 Start a New VI, Add the Front Panel Components
	5.2.2 Create and Configure the While Loop
	5.2.7 Add the Init, Release, and the Ramp SubVIs
	5.2.9 Create the Array functions, and Arithmetic & Comparison Operators
	5.2.10 Arrange the Components in Preparation for Wiring
	5.2.11 Connect the Wires

	Section 5.3 – Prepare the VI to Scan an Axis
	5.3.1 Set Default Values for the Front Panel Components
	5.3.2 Run the VI



